BOTANICAL SURVEY OF

WALLACE TOWNSHIP

INCLUDING IDENTIFICIATION OF
EXCEPTIONAL NATURAL AREAS
AND
RARE PLANT SPECIES SITES
FIELDWORK 2006
REPORT, FEBRUARY, 2007

Survey Conducted by
Janet Ebert and Jack Holt
1611 Smith Bridge Road
Chadds Ford, PA 19317 610-459-0585
With the assistance of

PURPOSE

This survey was commissioned by the Wallace Township Board of Supervisors and was funded by a combination of a Chester County Vision Partnership Program grant and township monies. The purpose of the survey was to inventory the plant species and communities of Wallace Township, paying special attention to the location and quality of native plant communities, the distribution of alien invasives, and the presence of state listed species of special concern. The information gathered in the inventory is being used to set conservation priorities including locating, determining, and evaluating Exceptional Natural Areas (ENAs) in the township. It can also be useful in restoration efforts, attempts to control alien invasive species, and as a baseline for the botanical and broader ecological health of the township.

METHODS

For the purposes of the survey the township was divided into twenty sections of more or less equal size (see Map 1-Botanical Survey Sections). The division was made using roads as much as possible, but also streams, utility lines, and property lines when necessary to keep sections roughly the same size. Dividing the township into separate survey sections provides a better picture of both the frequency and distribution of plant species. More importantly, it insured that the surveyors looked at the less interesting areas as well as the best habitats and develop a better feel for relative quality and distribution of habitats.

The majority of surveying was performed by repeatedly walking the roads of the township and recording all species encountered along them and in the adjacent habitats. Many landowners gave permission for a more thorough survey of their property, providing access to the interior of most sections. The Wallace Township Environmental Advisory Council, the Wallace Trust, members of the Planning Commission and Board of Supervisors and other citizens of the township provided essential assistance in landowner contact. Surveying began in January 2006 and concluded in January, 2007.

THE SETTING

Wallace Township, located in north-central Chester County, is approximately 7,761 acres, or 12.1 square miles, in area. It is irregularly squarish in shape and is bounded by East and West Brandywine, East and West Nantmeal, and Upper Uwchlan Townships respectively.

Pre-settlement vegetation consisted of deciduous forest punctuated by natural disturbances and clearing by Native Americans. European settlers cleared the trees for farmland, pasture, and timber, and agriculture became the mainstay of the local economy. Rocky or wet areas unsuitable for cultivation or grazing were harvested repeatedly for lumber and fuel, and the percentage of forest cover increased as marginal farmland was abandoned, Recently the conversion of farmland and woodland to residential land has accelerated, creating a patchwork of 'unused' natural habitats, farmland, and highly managed landscapes.

Wallace Township is not served by any major highways. Larger roads running through it include Creek Road (Route 282), which follows the East Branch Brandywine through the heart of the township, Little Conestoga Road through the north, Fairview Road from north to south, and Manor Road (Rt. 82), which cuts the far western corner. In addition the Pennsylvania Turnpike (I76), which is not connected to the township road system, cuts across the far northern edge of the township, with a service plaza (Peter J. Camiel) in the far northwest corner. Glenmoore and Cornog are the only communities of any size and contain what limited commercial or industrial development exists in the township. Devereaux Foundation and its school hold a large parcel of land in the center of the township, but the institutional facilities present on it are limited in size and number. A power line and numerous pipelines crisscross the township, their right-of-ways providing numerous stretches of managed open habitat. A long-abandoned railroad runs along the bank of the East Brandywine; it and the abandoned water-filled quarry southeast of Cornog provide the main conspicuous evidence of past commercial - industrial activity. Two major parks,

Springton Manor County Park in the south, and Marsh Creek State Park in the southeast, together with several smaller township parks provide preserves of open space and natural plant communities for the public. The Wallace Trust, The Nature Conservancy, and several other land trusts and Home Owner Associations also hold land or easements restricting land use. As a result, approximately 20% of land in the township is somewhat protected from future development.

GEOLOGY AND DRAINAGE

Wallace Township lies in the Piedmont geologic province, underlain by ancient rocks that were repeatedly metamorphized and deformed as continents and islands collided and split apart (see Map 2 - Wallace Township Watersheds and Geology). The oldest rock in the township is gneiss, a coarse-grained often streaky mixture of light and dark minerals that is over a billion years old. Approximately a billion years ago this gneiss was intruded by anorthosite, a rock formation composed mainly of calcium-rich feldspar. Later folding and faulting emplaced a wedge of slightly younger Chickies quartzite, a pale rock mostly composed of tightly-cemented quartz grains, at the south end of the township. Chester County was never covered by glaciers, but did have a considerably different climate when glaciers extended into northeastern PA., as recently as 10,000 years ago. The topography and drainage patterns were adjusted during the glacial period, and vegetation and recent land use are controlled by these underlying rocks and land forms.

The anorthosite intrusion forms a rough oval underlying the center-west of the township and parts of West Nantmeal and Honey Brook townships. In profile it forms a shallow bowl, sloping down to Indian Run and the East Brandywine. Large areas of the anorthosite have eroded into bouldery terrain better suited for woodlots than farming or grazing, giving Wallace Township its distinctive characteristics of large wooded tracts and pale stone walls. In the south the resistant Chickies quartzite forms a high ridge that offers sweeping views to the north and south, while deflecting the Brandywine eastward. A major inactive regional fault (the Brandywine Manor fault) separates the anorthosite and Chickies quartzite, also dividing the gneiss into two 'flavors' of rock based on the intensity of metamorphism. Like the anorthosite, large areas of gneiss-underlain terrain erode into boulder fields, with rich soil between the rounded rocks.

The township lies entirely within the East Branch of the Brandywine watershed. In the township three subdrainages occur within this watershed; the East Brandywine, running through the center and draining about 50% of the township; the north and south branches of Indian Run in the southwest 30%, draining the anorthosite-underlain area; and Marsh Creek, which forms most of the north border of the township and drains the all-gneiss area north and east of Little Conestoga Road. Marsh Creek originates in the Great Marsh, one of the largest non-tidal wetland complexes in southeastern PA. (Chester County Natural Areas Inventory, 1994, updated 2000). All the streams in the township are designated as Special Protection Waters (High Quality) by the PA. Department of Environmental Protection. Indian Run, including the North Branch is also designated as a wild trout stream by the PA. Fish and Boat Commission.

THE FLORA

A total of 825 plant species have been recorded for Wallace Township during this survey. Of these, 578 , or 70% are natives and 248 , or just under 30%, are aliens. The largest families are Asteraceae (Aster family) with 97 species, Poaceae (Grass family) with 88 species, and Cyperaceae (Sedge family) with 63 species. In comparison with six other townships with similar surveys, Wallace Township has both the highest number of native species and the lowest percent of aliens. The rocky topography and distance from urban centers have slowed the loss of habitat and native plant communities suffered by many other townships in the area. However, 156 species or 26% of the native plants were seen in only one or two sections. Some require soil, temperature, or water conditions that seldom occur in the township, and have never been very common, but others, such as mountain laurel and downy rattlesnake-plantain were once considered frequent or common in the county (see Hugh E.A. Stone's Flora of Chester County, 1945) but are now are in danger of disappearing. Certainly some species have already vanished from the township, and without protection, management, and restoration, the losses will increase. Appendix 1 contains a complete list of the plants of Wallace Township, and Appendix 2 lists of trees and shrubs.

PLANT COMMUNITIES

A plant community is defined by Fike (1999) as "an assemblage of plant populations sharing a common environment and interacting with each other, with animal populations, and with the physical environment" (Terrestrial and Palustrine Plant Communities of Pennsylvania). These interactions occur at a wide range of scales, from those involving regional factors such as climate and geology, to those involving chemical reactions and soil microbes. With so many (and often conflicting) influences, plant communities are not discrete, easily classified units, but more a continuum of possibilities. Also, the speed and magnitude of human alterations of the environment have reduced and degraded native plant communities faster than they can adjust, and many wide-spread communities are unstable and alien-dominated. Communities can be broadly delineated according to available moisture and dominant species.

Forests are woodlands with a closed canopy whose trees are generally older than $60-70$ years of age. They range from dry chestnut oak-heath, to red oak-mix, more mesic beech-tulip-oak, to maple-pin oak swamp forest, to floodplain forest.

Dry Oak-Heath: The characteristic species of this community are chestnut oak (sometimes in pure stands, but usually mixed with other oaks), a red maple understory, and various mixtures of ericaceous (heath) shrubs (mountain laurel, blueberries, huckleberries) beneath. The ground is usually covered with duff, often loose and thick. The herb layer is usually sparse, with sedges the most prominent component, and is generally confined to the frequently mossy duff-free areas. This community is frequently well-developed on the quartzite ridges in Chester County. The only known example of this community in Wallace Township occurs toward the east end of the Chickies outcrop where a narrow band of dry oak-heath forest extends from the ridgetop partway down the north slope.

Red Oak-Mix or Dry Oak-Mix: This forest type is usually found on dry ridges and slopes. In general oaks are the dominant canopy trees, but usually grow mixed with often considerable amounts of hickory, black gum, tulip, and beech. Black birch is a frequent canopy and understory tree, often forming sizable stands. Other common understory trees and shrubs include red maple, dogwood, witch hazel, maple-leaved viburnum, spicebush, and occasionally azalea. White wood aster is a common herb, but many other herbs and ferns are usually present, including may-apple, New York fern, white wild lettuce, Solomon's-seal, false Solomon's-seal, wild licorice, blue-stemmed goldenrod, partridgeberry, wild sarsasparilla, wintergreen, and sedges. Frequent boulder-strewn slopes and less frequent rock outcrops usually have lichens, mosses, and at least one species of fern growing on them, the most common being marginal shieldfern and Christmas fern. These rocky slopes also are frequent hosts for the understory tree hop-hornbeam. This is the most generalized and most common forest type in the township. It occurs on all three of the major bedrock types, mostly on ridges and drier slopes. Large high-quality examples of this forest community occur on the slope south and east of the Barneston flood control dam; in the northeast corner near the turnpike; in Marsh Creek State Park along the Brandywine, and many other areas.

Mesic forest: This is a generalized and therefore common forest type, of a medium moisture level, and is often not easily separated from the drier red oak-mix or the moister floodplain forests. This forest type tends to grow on deeper soils and gentler lower slopes than the red oak-mix. Oaks, mostly red or white, are often still present, but tulip, maples and/or beech are usually more common, and may dominate large tracts. The shady beech-dominated communities tend to have poorly-developed but generally native understory, shrub and herb layers over duff. In contrast tulip-dominated forests often have a very rich and diverse herb flora, shaded by ironwood, dogwood, spicebush, black-haw and other viburnums. Common herbs include jack-in-the-pulpit, may-apple, violets, bloodroot, sanicles, Solomon's-seal, false Solomon's-seal, enchanter's-nightshade, spring-beauty, and various ferns and sedges. However, the rich soils are conducive to alien invasion, especially where the soil has been disturbed. Many tulip woodlands are dominated underneath by invasives including Norway maple, the bush-honeysuckles, multiflora rose, burning bush, barberry, garlic mustard, long-bristled smartweed, stilt-grass, garlic, chickweed, ivy-leaved speedwell, and long-bristled smartweed. Non-invaded examples include the level forest east of Lovell Lane, the forest fragment south of Little Conestoga Road east of the pipeline in the eastern part of the township, and the rich mid-slope tulip woodland along the eastern edge of Springton Manor Park.

Wet forests: These are forests growing on poorly drained or seepy ground that is at best rarely flooded by streams. They are often heavily laced with gravelly seeps and muddy rivulets. Many are on low ground near the larger streams; others are in nearly level headwater areas.

Red maple is most often the canopy dominant, but pin oak is usually present to a lesser or greater degree. Other oaks, especially swamp white, tulip, shagbark hickory, and ashes are also frequent canopy species. Red maple also tends to dominate the understory, occasionally joined by black ash. The shrubbery is often thick and tangled, with arrowwood, black haw, winterberry, and spicebush the most common species. Swamp dogwood, blackberries, highbush blueberry, multiflora rose, and privet are also often present, the last two especially in edges and disturbed areas. Where not heavily impacted by aliens the ground flora is often diverse, though not so much as the mesic forests. In non-oak low woodlands jack-in-the-pulpit, skunk cabbage, trout-lily, spring-beauty, honewort, jewelweed, wood reed-grass, white-grass, and numerous sedges are some of the common ground covers. Gravel seep specialists include skunk cabbage, early saxifrage, crested shield-fern, Pennsylvania bittercress, and in the anorthosite region the uncommon herb mountain watercress. Some common muddy rivulet herbaceous species are fowl bluegrass, fowl manna-grass, swamp buttercup, and jewelweed. Unfortunately stilt-grass has successfully invaded many of these woodlands.

Low acidic woods dominated by oaks (often with tulip and red maple mixed in) generally are less diverse, but are also usually less impacted by alien invasives. Many have large swathes of bristly dewberry, Canada mayflower, and tree clubmoss growing, with cinnamon and other ferns common in the seeps. A good example of low oak woods is in the ENA \#4 north of Little Conestoga Road south of the pond.

Floodplain forests: Floodplains usually possess a variety of growing conditions, from muddy slough to sandy alluvium, often in close proximity. In frequently disturbed scour-and-fill areas near the larger watercourses trees such as sycamore and silver maple usually become established.

In often ribbon-like strips of higher well-drained ground along the stream, oaks (mainly red and white) and hickories (mostly bitternut and shagbark) are often common, shading spicebush, bladdernut, and a variety of rich or even red oak-mix woodland shrubs, herbs and numerous sedges. Beech and sugar maple are also a frequent canopy component in this habitat, often growing in near-pure stands, often on bouldery ground. In many areas the rich woods herbaceous species frequently grow alongside floodplain specialists, including Virginia waterleaf, Virginia bluebells, zigzag goldenrod, stonecrop, false mermaid-weed, meadow onion, sedges, and unfortunately often day-lily, dame's-rocket, and lesser celandine buttercup. Good examples of oak-hickory floodplain forests occur in ENA \#16 south of Park Lane on the east bank of the East Brandywine, along Indian Run, and in Marsh Creek State Park along the East Brandywine. A good example of sugar maple floodplain woods grows on the north side of Marsh Creek north of the turnpike east of Fairview Road, and of low beech forest on the south side of Indian Run in Springton Manor Park.

In the lower swampier and frequently flooded ground away from the streams red maple, pin oak, green ash, and slippery elm are the most common trees, occasionally joined by swamp white oak in richer areas and black walnut in more disturbed ground. Viburnums, mainly black haw and arrowwood, are the common shrubs, frequently joined in disturbed areas by multiflora rose, brambles, and privet. The ground flora here is usually weedy, with poison ivy, Virginia creeper, fowl bluegrass, fowl manna-grass, jewelweed, jack-in-the-pulpit, skunk cabbage, wood reed-grass, and sedges commonly joined by stilt-grass, ground-ivy, Japanese honeysuckle, and other invasives. In the spring the ground is often green with ephemeral herbs including spring beauty, trout-lily, false mermaid weed, and increasingly the invasive lesser celandine buttercup.

Specialist forest communities: In addition to the above forest types there are several specialist communities. Several wet wooded sloughs occur along the Brandywine from just above the Cornog bridge. Wetiand herbs and shrubs thrive in canopy breaks, including swamp dogwood, buttonbush, skunk cabbage, spatterdock, swamp buttercup, and some uncommon sedges. Finally, the frequent gravel bars along Indian Run and the East Brandywine are home not only to an assemblage of hardy annual weedy species but to sandbar sedge (Carex torta), a native gravel bar specialist.

Wetlands: Natural wetlands in Wallace Township, of which there are many, mostly occur along stream corridors, as seepage springs or wetlands along or at the base of slopes, in old stream channels or overflow channels along streams, or poorly drained areas near and on stream drainage divides. Man-made wetlands occur below ponds, in storm detention basins, or where natural drainage has been impeded by a roadbed or a railroad bed. Most wooded wetlands are clearly marked in spring by the appearance of skunk cabbage, with cinnamon fern, sedges, jewelweed, violets, and tearthumbs appearing later in the season. Arrowwood, winterberry, and highbush blueberry are common shrubs, and red maple and pin oak typical canopy trees. Swamp white oak and green ash ate often present, but usually only in larger wetlands. Skunk cabbage also occurs in open wetlands where it has to compete with other wetland plants, many of them woody, and is often quickly overtopped in the fight for light. Common marsh species include sensitive fern, jewelweed, tearthumbs, soft rush, willow herb, purple-stemmed aster, goldenrods, rice cut-grass, reed-canary grass, and various sedges. Cattails and arrowhead are generally found in the wettest areas where the ground is almost permanently inundated. Purple loosestrife and giant reed (with one major exception for the latter) are not serious problem aliens in the township, but the semi-native reed canary grass can often completely take over wet areas, especially where disturbance has occurred. Many variations of wetlands occur in the township, and Lambs Tavern has good examples of several intergrading wetland communities.

A special mention must be made of by far the largest wetland in the township, the Great Marsh, which continues well north into East Nantmeal Township. Along the water's-edge and at the upper end of the impoundment behind the dam on upper Marsh Creek grows a well-developed scrub shrub marsh dominated by marsh rose, swamp dogwood, sedges, and numerous vines and scramblers dotted with patches of emergent herbaceous marsh typified by cattails, sedges, sensitive fern, and skunk cabbage. In the impoundment itself spatterdock is the signature species, sharing space along edges with bur-reed, arrowhead, and hornwort. Considerable stretches of the marsh near the Pennsylvania Turnpike have been invaded by giant reed (Phragmites australis), but for the most part natives are still dominant.

Aquatic habitats: Two major aquatic habitats exist in the township: Flowing water and impoundments. Few vascular plants can tolerate the combination of shade and swiftly flowing water. On boulders in sunnier rocky stretches of Indian Run and the East Brandywine grows one that can, the formerly state-listed riverweed (Podostemum ceratophyllum). Quieter sunny or muddy stretches harbor narrow-leaved waterweed or water star-wort. An exception is upper Marsh Creek below the dam, where along sunny stretches pondweeds, waterweed, and bur-reed often form extensive underwater mats of green.

The two major impoundments are on Marsh Creek in the far northwest corner of the township, described above, and Marsh Creek Lake, the northwest corner of which extends into Wallace Township. Most of the steep shoreline of Marsh Creek Lake is lined by only a narrow strip of emergent vegetation, but stretches of shallow water off-shore support a few pondweeds. Barneston Dam is a "dry dam," meaning it only backs up water when rains are heavy. Additionally, there are many ponds in the township.

Transitional habitats (edges, hedgerows, thickets, old fields): These habitats have high light levels and are generally dominated by woody species with mobile (wind, bird, or mammal-distributed) seeds.

Edges and hedgerows: Common edge and hedgerow trees include black cherry, ash, sassafras, red maple, and wainut over a mixture of native and alien shrubs including spicebush, black haw, multiflora rose, and brambles. They are usually knit together by vines, mainly poison ivy, grapes, bittersweet, and honeysuckle. The herbaceous flora beneath the woody vegetation is generally low in diversity and alien-dominated. White avens, garlic mustard, and stilt-grass are some of the common ground species.

Old fields, or early successional habitats such as abandoned cropfields and pastures, are infrequent in the township. Typically as time passes after abandonment the plants growing in these habitats progress from annual herbs or pasture grasses to perennials such as goldenrods and asters. In this area they are quickly invaded by aliens, mostly multiflora rose, autumn olive, bittersweet, and Japanese honeysuckle, with natives such as poison ivy, grapes, and tree saplings contributing heavily.

Thickets are old fields where the shrubbery, vines, and tree saplings (especially red maple, black cherry, ash, and tulip) have grown dense or tall enough to form a closed canopy. The boundary between old field and thicket (and young woodland) is not always clear, and the two habitats often interfinger until the patches of closed canopy merge. Both old fields and thickets once supported a diverse mix of native grasses, sedges, asters, goldenrods, tick-trefoils, clubmosses, and shrubs. Today the majority of both these habitats, especially in lowland areas, contain a limited number of hardy natives and aggressive aliens.

Young woodlands are less than 60 years of age, often have a closed or nearly closed canopy similar to those of forests, but tend to be dominated by one or two species of native early to mid-successional trees such as tulip, red maple, black cherry, or ash and rarely have a well-defined understory. They are often dominated in the shrub and herb layers by aliens and/or woody creepers. Typical shrubs include bushhoneysuckles, multiflora rose, brambles and spicebush, often frequently entwined or covered by Japanese honeysuckle, bittersweet, poison ivy, and Virginia creeper. Garlic mustard, garlic, stilt-grass, violets, and white avens are some common hardy herbs found in this habitat, with occasional remnant field and meadow herbaceous species mixed in. In general most younger woodlands, especially those adjacent to older ones, have some native shrubs and herbs present, but isolated young woodlands are often entirely devoid of them.

Open Lands (meadows, fields, heavily managed communities, and roadsides): Since any ground left along in the region is soon colonized by woody vegetation all non-wetland areas dominated by herbaceous plants are managed to a certain extent.

Meadows are areas defined as being open ground that is not a wetland where a majority of the flora is composed of native forbs, grasses, and sedges, with drainage, soil type and slope determining what species are present. Common wet meadow species include numerous sedges, rushes, joe pye-weed, goldenrods, ironweed, heal-all, agrimony, dogbane, and golden ragwort. Drier meadows are commonly dominated by goldenrods or grasses including broomsedge, purple top, sweet vernal grasses, sedges, and panic-grasses, with herbs such as milkweed, tick-trefoil, dwarf cinquefoil, asters, and dogbane frequent components. The drier and wetter portions of meadows tend to have the greatest diversity of species, and in general the older the meadow, the higher native plant diversity it possesses.

Unmown meadows are soon invaded by poison ivy, honeysuckle, multiflora rose, and tree and shrub seedlings. On the other hand, too-frequent mowing discourages native forbs and grasses and turns a meadow into a field, or an open area dominated by alien pasture or hay grasses and herbs such as orchard grass, fescue, bromes, bluegrass, timothy, and clovers. However, most fields, even the most heavily utilized, usually possess a few native species, especially along edges or on steep slopes, and the distinction between a meadow and a field is often unclear.

Heavily managed communities include pastures, active cropland, and lawns. In addition to cultivated species each of these continually disturbed habitats posses a typical assemblage of weedy, mostly alien and annual plant species including chickweed, lamb's-quarters, ragweed, thistles, and various grasses. These habitats, characterized by unstructured, low-diversity plant communities and compacted soils, allow rapid runoff of rain and nutrients (including fertilizer and manure) which degrade stream and groundwater quality.

Utility right-of-ways, of which Wallace Township has an abundance (one power line and at least five gas lines) are generally managed to suppress woody species, which sometimes allow for the development of unusual open-ground plant communities, especially in wetter or drier sections. However, too-frequent maintenance usually results in invasions of weedy non-natives which overwhelm the native flora.

Roadsides, especially those in sunny areas, are usually dominated by a few hardy and adaptable species such as knotweed, ragweed, brome-grass, and chicory which are able to deal with the harsh environment of temperature and moisture extremes, excessive mowing, pollution, or poisoning. However, a few feet back from the pavement roadbanks often have a greater diversity of both alien and native species. The richness of a roadbank, especially in native species is often a good indicator of the relative health of any nearby open or woodland plant community.

ALIENS

Aliens are defined as species that did not naturally occur in the area before European settlement, but have naturalized and have become part of the flora. Most are exotics, introduced from other continents, many unintentionally. A few are adventives, native elsewhere in North America, which opportunistically moved into the area in response to changes in land use or climate. Many are disturbance species that are abundant only in disturbed ground - farm fields, lawns, and roadsides. The most ecologically disruptive are those that aggressively invade natural plant communities or less-maintained areas. With no predators, they reproduce rapidly and soon out-compete the natives for sunlight and water, reducing the flora to a group of competing aliens. Deer speed up this process by preferentially browsing the natives. Many aliens, including most of the worst woody invaders, were originally introduced as ornamental or landscape plantings. It often takes years after initial introduction for a plant's population to reach a 'critical mass' and start expanding its range and numbers dramatically.

Aliens make up 30% of the township flora by number of species. Most of the worst invaders such as multiflora rose, bittersweet, autumn olive, Japanese stilt-grass, long-bristled smartweed, and garlic mustard occur in abundance throughout the township. Others such as lesser celandine buttercup, giant reed, Japanese hops, purple loosestrife, and mile-a-minute are well locally established but not ubiquitous. Some have habitat limitations that will restrict their spread somewhat, but others, especially lesser celandine and mile-a-minute, will continue to spread and grow more abundant. Other species just arriving but threatening include linden viburnum, Bradford pear, Japanese cork tree, Hingen cherry, Photinia, and Aralia elata. Other invasives not seen on this survey but are possibly present include Japanese knotweed, porcelain berry, jetbead, pachysandra, and several alien viburnums (V. plicatum, setigerum, sieboldii).

Many aliens present in the township are restricted to specific, already disturbed habitats (roadsides, ponds, actively cultivated ground, etc.) or are simply 'better behaved' (in comparison to invasives like garlic mustard) in that they do not take over and dominate the habitats they enter. These give interesting examples of both plant movement and community development. Allium oleraceum, a garlic, previously collected only from the lower Brandywine in Chester County, is now well-established in floodplain forests and moist roadsides in the township. Teasel (Dipsacus sylvestris) is relatively frequent on roadsides and disturbed low utility cuts, possibly due to the anorthosite. The carrot ally Anthriscus caudatus (possibly a new state record), the grass Chloris verticillata (more common in New Jersey), the mustard Coincya monensis (spreading along major highways), and seaside goldenrod (Solidago sempervirens) have all spread into the township via the Pennsylvania Turnpike.

RARE PLANT SPECIES

The Pennsylvania Natural Diversity Index (PNDI) keeps track of all species in the state that are determined to be of special concern. Endangered species (PE) are those which are in danger of becoming extinct in the state. Threatened species (PT) may become endangered if their habitat and populations are not maintained. Rare species (PR) are uncommon or restricted in range or numbers. Undetermined species (TU or PU) are believed to be in danger of population decline but not enough is known about their range or population dynamics to categorize them as endangered, threatened, or rare. Vulnerable species (PV) are in danger of population decline because of economic or other factors that would cause them to be collected.

Seven species of special concern in fifteen sites were recorded during the 2006 survey (see Map 3). None of these populations were previously known.

Scientific Name	Common Name \#	\# Sites	Current Status	CC*
Andropogon glomeratus	Broom-sedge	1	PR	8
Crataegus pensylvania	Pennsylvania hawthorn	1	PT	6
Desmodium nuttallii	Nuttall's tick-trefoil	1	TU	4
Dicanthelium yadkinense	Yadkin river panic grass	1	TU	7
Hydrastis canadensis	Goldenseal	3	PV	6
Poa paludigena	Marsh bluegrass	1	PR	10

* Coefficient of conservatism - see page 9 for more details.

Following are brief descriptions of each species and their habitats:
Andropogon glomeratus - Broomsedge - PR A warm-season grass with a bushy inflorescence that grows in wet meadows. A small population was found growing in a low wet meadow on anorthosite.

Crataegus pensylvania - Pennsylvania hawthorn - PT A hawthom with large pubescent leaves and fruits. Hawthorns are usually edge and hedgerow species. Two trees were observed growing in thickety open woods along and at the base of the north bank of the turnpike, and there may be others growing in the area.

Desmodium nuttallii - Nuttall's tick-trefoil - TU A large native bean of southern affinities. A sizable population was found growing in a dry meadowy pipeline cut in the northern part of the township.

Dicanthelium yadkinense - Yadkin river panic-grass - TU A warm-season grass of sandy fields, gravel bars, or alluvial sunny soil. Intolerant of competition. A single population was found growing along a woodland edge near a stream in the western part of the township.

Hydrastis canadensis - Goldenseal - PV A low-growing herb, formerly extensively collected for medicinal purposes. Generally found in rich woodlands in deep soil, often in large colonies. Three separate populations in two sections, two of them quite small, were found in the center of the township.

Poa paludigena - Marsh bluegrass - PT A small slender easily-overlooked grass found in extremely highquality open swamp forests or wet scrub shrub marshes with constant water flow on mossy or sedgy tumps. Only a single small population was found during the survey. A larger population may well present, as the site was not thoroughly explored due to both the extremely difficult terrain and reluctance on the part of the botanists to damage the habitat unnecessarily. In addition it can only be positively identified during a brief period during the growing season.

Trillium cernuum - Nodding trillium - TU An herb of rich often rocky high-quality moist woodlands. In PA, it only occurs in the southeast, where it is heavily preyed upon by deer.

In addition four Watchlist (PW) species were found in the township during the survey. Watchlist species are those plants under consideration for official listing in the state.

Scientific Name	Common Name	\# Sites	Habitat	CC
Carex striatula	A sedge	2	Dry woods	6
Carex styloflexa	A sedge	2	Wet woods	7
Dicanthelium polyanthus	A panic grass	1	Stream banks	8
Euonymus americanus	Running strawberry bush	1	Rich woods	5

Note - Rare plant species locations are called are called "RSS" (rare species sites) on the accompanying maps. See Map 3 for the general locations of rare plant species.

EXCEPTIONAL NATURAL AREAS

An Exceptional Natural Area (ENA) is defined as an area composed of relatively intact species-rich, native plant-dominated communities. ENAs are reservoirs of biodiversity. They may involve more than one type of plant community, including woodland, meadow, or wetland, and may vary widely in size. ENAs also may include managed landscapes such as occasionally mowed or grazed meadows or utility cuts which exhibit one or more of the characteristics noted below, and which will disappear without continued management or human intervention. The following biological community characteristics are used to locate and determine ENAs in Wallace Township:

- Communities containing species that are uncommon or declining in the township or the region.
- Communities that are an unusually rich and diverse examples of characteristic plant communities in the township.
- Communities that reflects unusual or regionally uncommon geologic features or structures.
- Communities with a number of species with limited ranges of ecological tolerance or high degrees of fidelity to narrow ranges of habitat condition, indicating a specialized or long-established community. (Coefficient of Conservatism of 7 or greater (see below for explanation)

Starting in the late 1970's, two professors in the Chicago area developed and expanded a method for evaluating natural areas for quality and environmental integrity. Several years ago, Bowman's Hill Wildflower Preserve adapted this method for use in Pennsylvania. The first and most important step in this method is to assign a Coefficient of Conservatism (CC) to every native plant found in the specified region. Bowman's Hill, in consultation with regional botanists, created lists of species with CCs for southeastern PA, available on their website www.bhwp.org.

The criteria for assigning coefficients are:

- 0 to 3 Plants with a high range of ecological tolerances / found in a variety of communities
- 4 to 6 Plants with an intermediate range of ecological tolerances / associated with a specific plant community
- 7 to 8 Plants with a poor range of ecological tolerances / associated with an advanced stage in plant community succession.
- 9 to 10 Plants with a high degree of fidelity to a narrow range of habitats

In Wallace Township, we are using species with a CC of 7 or greater as indicators of high quality habitat and potential Exceptional Natural Areas. See Appendix 3 for a list of Conservative Plant Species of Wallace Township.

Following is a list and brief description of twenty-four ENAs determined by this botanical survey. The ENAs are shown on Map 3. Seventeen of these are mostly in forest, often with wetlands and rich edges. Three are predominantly wetland, with some shrubs and younger trees, and one has a moist meadow and young woods seep. Only one (Cornog) is exceptional for its lack of water and trees. Due to time and accessibility constraints, not all parts of the township were thoroughly surveyed. It is probable that other ENAs would be discovered with more field work and that some of the delineated ENAs should be larger. In general, already protected lands, many of which contain ENAs, were not as well explored as unprotected areas.

As both a general rule and as a practical matter, high quality natural areas such as ENAs would be expected to occur more frequently on lands which have been protected from human disturbance for some length of time. These would normally include lands that are or were parts of large estates, lands that have been protected for some time, and, probably most often, lands that are constrained against farming or other kinds of development. This would include steep slopes, dry, rocky areas or other areas of 'poor' soils (from a farming standpoint), areas of unusual geology (such as serpentine outcroppings, which do not occur in Wallace Township, and wet areas, including wetlands and floodplains. One exception to this could be areas subject to heavy pressure from invasive plant species, as floodplains sometimes are.

To further explore some of these concepts, ENAs were analyzed here through a series of mapping exercises. For example, older woodlands can be estimated using older USGS Topographic (or Topo) maps. Woodlands that existed in 1956 are shown by the USGS topo maps (Wagontown and Downingtown 7.5
min . quads), and are more likely today to contain mature woods and therefore the forested ENAs (see Map 4 - Woodlands $1956 /$ Woodlands 2003 and ENAs and RSS. It is worth noting here that many of today's forested interiors (the interior or deep woods, measured at 300' from any exterior edge) are found in the older woodland blocks. ENAs and RSS are then shown on the Wallace Township Woodland Classification on Map 5-Woodland Classification, ENAs and Rare Plant Species Sites. Finally, ENAs were mapped on top lands found within Wallace Township's Flood Hazard and Wet Soils District (see Map 6-ENAs and Rare Species Sites with the Wallace Township Flood Hazard and Wet Soils District).

1. The Big Marsh (north of Turnpike) and upper Marsh Creek. An extremely large marsh extending north of the township border. Its heart is a large shallow impoundment with diverse aquatic flora, lined by broad dense swathes of marsh rose-dominated shrub wetland, with stretches of emergent herbaceous marsh to the wet and patches of oak woods along lower edges. Stretches along the Pennsylvania Turnpike have been impacted by Phragmites. As the property is protected it was not extensively surveyed. Section 1.

DRAINAGE: Marsh Creek
GEOLOGY: Gneiss

NOTABLE SPECIES	Habitat	CC	PA Rank	Twp. Freq.
Aronia arbutifolia	Swamps	7		4
Bartonia virginica	Swamps	7	2	
Calamagrostis canadensis	Swamps	7		4
Ceratophyllum demersum	Shallow water	6		1
Crataegus pensylvanica	Thickets	6	TU	1
Lyonia ligustrina	Swamps	7		2
Mikania scandens	Marshes	7	3	
Nuphar luteum	Open Sloughs	7	2	
Osmunda regalis	Wet Woods	7	6	
Triadenum fraseri	Swamps	9	2	
Toxicodendron vernix	Swamps	8	4	

2. Lovell Lane Woods - A Rich oak-tulip-hickory upland woods south of the road, straddling and including a pair of pipeline cuts, with a dense growth of spicebush underneath, a high diversity of rich woodland herbs, and relatively few aliens. The pipeline cuts have patches of dry meadow species mixed with aliens. No notable species present, but was unusually species-rich. Edged by residential lots to the west and bordered in the east by a power line. Sections 1, 2.

DRAINAGE: Marsh Creek
GEOLOGY: Gneiss
3. Lambs Tavern wetland complex. A young red maple swamp surrounded by and interfingered with a tussock sedge marsh / swamp and wet meadows, with a wet pipeline cut along the north side. The most exceptional area is a wet glady thicket not far from the road with a large concentration of high-quality species. Section 2

DRAINAGE: Marsh Creek
GEOLOGY: Gneiss

NOTABLE SPECIES	Habitat	CC	PA Rank	Twp. Freq.
Bartonia virginica	Swamps	7	2	
Calamagrostis canadensis	Swamps	7	4	
Carex atlantica	Swamps	8	3	
Gentiana andrewsii	Wet Meadows	8	4	
Lysimachia terrestris	Swamps	8	2	
Phlox maculata	Wet Meadows	7	3	
Sanguisorba canadensis	Wet Meadows	7	1	
Saxifraga pensylvanica	Wet Meadows	8	2	
Sphenopholis pensylvanica	Swamps	8	1	
Triadenum fraseri	Swamps	9	2	

4. Woods to pond north of Little Conestoga Road - A good example of a dry oak-mix woods with a heath ground flora and a diverse dry roadbank community. Northward and downslope the woodland changes to a wet oak - maple woods, laced with large seeps as it approaches a large pond. Section 2

DRAINAGE: Marsh Creek
GEOLOGY: Gneiss

NOTABLE SPECIES	Habitat	CC	PA Rank	Twp. Freq.
Solidago ulmifolia	Woods Edges	6	3	

5. Emergent marsh on east side of Fairview Road between Marsh Creek and PA Turnpike. An open marsh and scrub-shrub wetland grading eastward into wet woods. Wet patches also occur on the west side of Fairview Road, but they are not as rich and have more aliens. Patches of swampy woods occur all along the Marsh Creek floodplain from the big marsh to below Fairview Road. Section 3

DRAINAGE: Marsh Creek
GEOLOGY: Gneiss

NOTABLE SPECIES	Habitat	CC	PA Rank	Twp. Freq.
Carex lacustris	Marshes	8	3	
Glyceria canadensis	Swamps	7	1	
Iris versicolor	Marshes	7	2	
Lysimachia terrestris	Swamps	8	2	
Osmunda regalis	Wet Woods	7	6	
Peltandra virginica	Marshes	6	2	
Pilea fontana	Marshes	8	1	
Spiraea alba	Marsh	6	2	
Veronicastrum virginicum	Pipeline Cut	8	2	

6. Marsh Creek wooded gorge. Approximately a half mile southeast of Fairview Road along the township line Marsh Creek enters a relatively narrow, rocky corridor with a steep gradient. A stretch of Marsh Creek closest to the turnpike has been channelized, Most of the bouldery and level north side of the stream east of a utility cut is a good-quality sugar maple-oak-hickory woods unaffected by the channelization, and extends up a steep slope into East Nantmeal Township. This anomalous stream corridor is probably involved with large changes in drainage of the Great Marsh in the periglacial period.

DRAINAGE: Marsh Creek
GEOLOGY: Gneiss

NOTABLE SPECIES	Habitat	CC	PA Rank	Twp. Freq.
Elymus hystrix	Floodplain wds. 4	2		

7. Rich rocky wooded slope east of Fairview Road, along and south of two pipelines. This ENA includes several broader sections of woodland between the pipelines. This often bouldery woodland, dominated by oak dotted with mixed stands of oak and tulip, has a high diversity of rich woodland herbs, shrubs, and understory trees with few alien invasives except along edges. It is imbedded within a larger area of younger woodland with some residential development along edges. Section 3

DRAINAGE: Marsh Creek
GEOLOGY: Gneiss

NOTABLE SPECIES	Habitat	CC	PA Rank	Twp. Freq.
Conopholis americana	Rocky Woods	7		1
Euonymus americanus	Rich Woods	5	PW	1
Polypodium virginiaum	Rock Outcrops	8		4
Pyrola elliptica	Rich Woods	6		4
Vaccinium stamineum	Dry Woods	7		9

8. Marsh Creek Conservancy land, northwest corner of the township. This property contains three distinct notable habitats. Most of the forest north of the pipeline is a relatively level stretch of somewhat rocky high-quality oak-dominated forest, with some richer tulip near the pipeline and in the east. Close to the turnpike the forest grows increasingly dry, with blueberries and huckleberries. Above the turnpike is a steep dry rocky open series of ledges dominated by grasses and stunted shrubs that was created during construction of the turnpike and maintained by the extremely dry well-drained nature of the habitat. Much of the pipeline south of the woodland is overgrown with alien invasives, mostly stilt-grass, but still possesses a fair number of uncommon dry meadow species. Section 3.

DRAINAGE: Marsh Creek

NOTABLE SPECIES	Habitat	CC	PA Rank	Twp. Freq.	
Aristolochia serpentaria	Dry Edges	6		5	
Ceanothus americana	Dry Meadows	7		1	
Conopholis americana	Rocky Woods	7		1	1
Desmodium nuttallii	Dry Meadows	4	TU	1	
Paronychia canadensis	Dry Ledge	6		1	
Spiranthes cernua Trichophorum planifolium	Dry Woods Ledge	6	6		5

9. North slope forest and pipeline cut south and southeast of Barneston Dry Dam. A rich oak-tulip-birch rocky forest and older successional woodland, interrupted by scrub-shrub powerline cut. This is the best part of an extensive wooded slope and floodplain complex, some of which was recently logged and some which is younger and less diverse. Both the woods and the utility cut contain a high diversity of species. Section 4.

DRAINAGE: Brandywine

NOTABLE SPECIES	Habitat	CC	PA Rank	Twp. Freq.
Asclepias exaltata	Rich woods	7		3
Aristolochia serpentaria	Dry Edges	6		5
Chamaelirium luteum	Rich Rocky Wds	8		1
Galearis spectabilis	Rich Woods	6	7	
Goodyera pubescens	Rich Woods	6		2
Lobelia cardinalis	Low wet woods	6		3
Obolaria virginica	Rich Woods	7		1
Pyrola elliptica	Rich Woods	6		4
Polypodium virginianum	Rock Outcrops	8		4
Trillium cernum	Rich Woods	6	TU	6
Triosteum aurantiacum v. aur.	Utility ROW	6		3

10. Valley woodland and wetland complex between Little Conestoga Road and Rt. 282. The south end of this mostly forested area has a high-quality and diverse west-facing oak-dominated wooded slope in the south and a lower moist rich tulip-dominated forest northward. The south slope drains into an acidic red maple swamp forest dominated by skunk cabbage, cinnamon fern, and clearweed, the tulip woods into a red maple and pin oak swamp community. Across the stream is a large semi-wooded tussock sedge marsh being shaded out by red maple, which grades westward into a mown meadow community. The north end of the complex has mature tulip-beech-oak forest on the slopes above a large young red maple seepage wetland, with semi-open glady areas surrounding the swamp. Section 5

DRAINAGE: Brandywine GEOLOGY: Gneiss, anorthosite

NOTABLE SPECIES	Habit	CC	PA Rank	Twp. Freq.
Aronia arbutifolia	Swamps	7	4	
Calamagrostis canadensis	Wet Woods	7	4	
Carex leptalea	Wet Woods	7	2	

Doellingeria umbellata	Marshes	7	1
Phlox maculata	Wet Meadows	7	3
Toxicodendron vernix	Swamps	8	4
Trichophorum planifolium	Dry Woods	6	2

11. Barneston Road powerline cut and woods. A rocky wet powerline cut meadow west of Barneston Road next to seepy to rocky high-diversity woodlands. The upper portion of the right-of-way was herbicided and brush-hogged in 2006, but the lower wetter portion on either side of the stream was not disturbed. Amidst bouldery terrain are pockets of both moist and dry meadow, sedge wetland, and scrubshrub swamp, interrupted by stands of Phragmites. Farther west is a youngish low red maple-pin oak woods with gravelly seeps, some older trees, and an extensive drainage-divide seep near Rt. 82. The area immediately upstream was not surveyed. Section 8

DRAINAGE: Indian Run	GEOLOGY: Anorthosite			
NOTABLE SPECIES	Habit	CC	PA Rank	Twp. Freq.
Agalinis tenuifolia	Low Meadows	6		1
Caltha palustris	Wooded Seeps	7		3
Carex atlantica	Wet Meadows	8		3
Carex styloflexa	Low Woods	7	PW	2
Fraxinus nigra	Swamps	7		6
Gentiana andrewsii	Wet Meadows	8		4
Lilium canadense	Low Meadows	6		11
Mikania scandens	Marshes	7		3
Dicanthelium polyanthes	Low Meadows	8	PW	1
Pedicularis canadensis	Low Meadows	6		1
Toxicodendron vernix	Marshes	8		4

12. North branch of Indian Run east of Barneston Road. This low rich rocky woods, mostly north of the stream, has a considerable diversity of native herbs, grasses, and ferns, especially in the open meadowy woodland and its edge near Indian Run Road. This is the west end of a much larger unexplored wooded stream system that extends nearly 1.3 miles from Barneston Road to Springton Road. A considerable amount of deer browse was observed in the interior. Section 9 .

DRAINAGE: Indian Run	GEOLOGY: Anorthosite			
NOTABLE SPECIES	Habitat	CC	PA Rank	Twp. Freq.
Orobanche uniflora	Rich Woods	6		2
Dicanthelium yadkinense	Low Woods	7	TU	1
Hypoxis hirsuta	Open Woods	5		6
Viola palmata v. triloba	Open Woods	6		3

13. Brandywine bend wetland complex. This ENA extends from lower slope of the Chickes Ridge on the uphill roadbank of Rt. 282 to the bank of the Brandywine. The roadbank along Route 282 below the house lots has growing some of the best patches of mountain laurel left in the township along with several unusual dry woodland herbs. North of Rt. 282, a low rich oak/oak-tulip woodland possesses a wide diversity of rich and acidic woodland species including two state-listed herbs. Northward the woods grades through a red maple-cinnamon fern swamp into a sizable and extremely high-quality tussock sedge/scrub-shrub swamp and marsh bounded on the north by the Brandywine floodplain 'levee' and on the west by an unusual swamp white oak-black ash woodland. Uncommon species abound in both the open and wooded portions of this wetland. This complex is the most botanically outstanding natural community in Wallace Township. Section 11.

DRAINAGE: Brandywine GEOLOGY:Anorthosite, Chickies quartzite erosional deposits
NOTABLE SPECIES Habit CC PA Rank Twp. Freq.

Aronia arbutifolia	Swamps	7		4
Asclepias exaltata	Rich Woods	7		3
Caltha palustris	Wooded Seeps	7		3
Cardamine rotundifolia	Wooded Seeps	8	7	
Carex bromoides	Wet woods	7		2
Carex leptalea	Swamps	7	2	
Carex lacustris	Marshes	8		3
Fraxinus nigra	Swamps	7		6
Hydrastis canadensis	Rich Woods	6	PV	2
Iris versicolor	Marshes	7		2
Kalmia angustifolia	Acidic Woods	8		2
Lyonia ligustrina	Swamps	7		2
Melampyrum lineare	Dry Woods	7		1
Poa paludigena	Marshes	10	PR	1
Pyrola americana	Rich woods	6		1
Saxifraga pensylvanica	Swamps, Marsh	8		2
Spiraea alba	Marsh	6		2
Toxicodendron vernix	Swamps, Marsh	8		4
Trillium cernuum	Rich Woods	6	TU	6
Viburnum lentago	Wet Woods	5		2

14. Eastern Chickies Ridge. The top and upper slope of this ridge has the only stretch of chestnut oak -heath forest found in the township. Mountain laurel is common, although much of it appears very sickly. An opening created in the ridge during housing construction is home to two clubmosses. Below the ridge is an alien-free tulip-oak-cherry birch slope. A bench in this slope, which probably follows the track of the Brandywine Manor fault, has several cinnamon fern/skunk cabbage/clubmoss seeps. The soil of the lower slope, while underlain by anorthosite, contains enough erosional sandy 'float' from upslope to support a dry oak woods with some heaths. Section 17.

DRAINAGE: Brandywine GEOLOGY: Chickies quartzite, Anorthosite

NOTABLE SPECIES	Habit	CC	PA Rank	Twp. Freq.
Kalmia angustifolia	Acidic Woods	8	2	
Kalmia latifolia	Acidic woods	6	2	
Lycopodium clavatum	Dry Meadow	7	2	
Pyrola elliptica	Rich Upl. Wds	6	4	

15. Slope and floodplain woods east side of Brandywine opposite Burgess township Park. A small but high-quality parcel of rocky sugar maple-hardwood floodplain woods with good diversity of trees, shrubs, and herbs. No notable species, but a good example of this forest type. Surrounded by less diverse woods. Section 11.

DRAINAGE: Brandywine GEOLOGY: Anorthosite
16. Slope and floodplain woods and seeps southeast of Park Lane along the Brandywine. A good example of rich diverse floodplain hardwoods, including several meadowy openings on the floodplain. Includes portions of rich wooded slope forest and gravelly seep. Section 11.

DRAINAGE: Brandywine	GEOLOGY: Anorthosite			
NOTABLE SPECIES	Habitat	CC	PA Rank	Twp. Freq.
Cardamine rotundifolia	Gravelly seeps	8		7
Ipomoea pandurata	Dry Woods	4	1	
Muhlenbergia tenuiflora	Rich Woods	5	1	

17. Rich floodplain woods and wetlands between Brandywine and old RR north of Marshall Road. A good example of sedge-rich floodplain 'levee' woods with a back swamp and old wet stream channels. The hydrology of this may have been altered and influenced by the now-abandoned railroad. Section 12.

DRAINAGE: Brandywine
GEOLOGY: Gneiss, near Brandywine Manor fault

NOTABLE SPECIES	Habitat	CC	PA Rank	Twp. Freq.
Arisaema dracontium	Floodpl. Woods 7	2		
Carex bromoides	Wet Woods	7	1	
Nuphar luteum	Open Sloughs	7	2	

18. Low meadow/woods/pipeline cut complex west of Edgemoor Lane. This small elongate meadow surrounded by young thickety woods contains the richest assemblage of uncommon meadow species in the township, including a state rarity. Several of these, along with additional local rarities, also grow in a nearby pipeline right-of-way. The meadow is probably mowed occasionally, and needs continued management. The surrounding young woodlands, and across the pipeline, are home to clubmosses, sedges, and an orchid. Section 13

DRAINAGE: Indian Run GEOLOGY: Anorthosite

NOTABLE SPECIES	Habit	CC	PA Rank	Twp. Freq.
Andropogon glomeratus	Wet Meadows	8	TU	1
Aristolochia serpentaria	Dry Edges	6		5
Aronia arbutifolia	Swamps	7		4
Calamgrostis canadensis	Wet Woods	7		4
Carex styloflexa	Low Woods	7	PW	2
Cirsium muticum	Wet ROW	6		3
Gentiana andrewsii	Wet Meadows	8		4
Lycopodium hickeyi	Dry Woods	7		2
Phlox maculata	Wet Meadows	7		3
Platanthera lacera	Low ground	4		2
Spiranthes cernua	Wet Meadows	6		5
Spiraea latifolia	Wet ROW	6		1

19. Moist meadow and rocky wet woods south of Indian Run Road. The east end of this ENA is a low moist diverse meadow. The west end is a rocky young low oak-red maple woodland surrounding a series of gravelly seeps. It is surrounded on the south by horse pastures and managed tallgrass meadows and by a low young woodland across the road to the north. Section 15.

DRAINAGE: Indian Run	GEOLOGY: Anorthosite			
NOTABLE SPECIES	Habitat	CC	PA Rank	Twp. Freq.
Caltha palustris	Wooded Seeps	7	3	
Cardamine rotundifolia	Gravelly seeps	8	7	
Spiranthes cernua	Wet meadow	6	5	

20. Upper Indian Run meadow, diverse young maple woodland, and low forest. The most distinctive part of this ENA is a small tall-grass meadow complex that is closing in as woody vegetation, both native and alien, encroach upon it. This meadow, unique in the township, is dominated by Indian grass with considerable amounts of blueberries, huckleberries, and azaleas mixed in. Its edges and surrounding thickets have large patches of several species of clubmosses growing. Northward the thickets grade into increasingly older rich low woodlands, culminating in a rocky rich oak-dominated forest along the south branch of Indian Run. East of Indian Run is a mixed-canopy woodland, threaded with gravelly seeps, with a high diversity of forest shrubs and herbs. The area upslope from the meadow was recently cleared for development, creating a long edge near the meadow. The intact woodland upstream along Indian Run was not surveyed. Section 15.

DRAINAGE: Indian Run
GEOLOGY: Anorthosite

NOTABLE SPECIES	Habitat	CC	PA Rank	Twp. Freq.
Asclepias viridiflora	Dry Meadow	7		1
Gentiana andrewsii	Meadow	8	4	
Hieracium scabrum	Dry Meadow	3		3
Hieracium gronovii	Dry Meadow	5	2	
Huperzia lucidula	Seepy Woods	6		5
Lycopodium clavatum	Dry Meadow	7	2	
Mitella diphylla	Seepy Woods	8	2	
Platanthera lacera	Meadow	4		2
Polygala sanguinea	Dry Meadow	5		2
Trillium cernuum v. cernuum	Rich woods	6	TU	6
Trichostema dichotomum	Dry Meadow	4		1
Veratrum viride	Seepy Woods	6		5
Viola sagittata	Dry Meadow	4	4	
Viola palmata v. stoneana	Young Woods	6		2

21. Lower Brandywine corridor. This ENA is a large expanse of well-drained often rocky floodplain woods, with some back swamps, a roadside pocket marsh, gravel bars, and wooded slopes. It includes a rich wooded knoll with a rock outcrop on the west side of Route 282. Most of this site is Marsh Creek State Park, and portions of the woods on the slope are younger and weedy. Section 18, 19, 20

DRAINAGE: Brandywine	GEOLOGY: Gneiss			
NOTABLE SPECIES	Habitat	CC	PA Rank	Twp. Freq.
Arabis laevigata	Rocky Woods	7	1	
Arisaema dracontium	Floodpl. Woods	7	2	
Carex torta	Gravel Bars	7	7	
Cephalanthus occidentalis	Marshes	7	4	
Dicentra cucullaria	Rich Ravines	7	4	
Fraxinus nigra	Swamps	7	6	
Polypodium virginianum	Rock Outcrops	8	4	
Saxifraga virginiana	Rocky Woods	6	2	
Sedum ternatum	Floodpl. Woods	7	7	
Symphyotrichum prenanthoides	Floodpl. Woods	6	4	

22. Cornog dry meadow and thickets. North of Cornog Quarry is a unique example of formerly disturbed terrain grown up into a mostly natural grass and bean-dominated dry meadow, currently being encroached upon and threatened with extension by autumn olive and multiflora rose. The quarry exists because the complex geology near the Brandywine Manor fault and the end of the Chickies ridge. Section 19.

DRAINAGE: Brandywine GEOLOGY: Gneiss, near end of Chickies, fault

NOTABLE SPECIES	Habitat	CC	PA Rank	Twp. Freq.
Aristida dichotoma	Dry Meadows	0	1	
Bulbostylis capillaries	Dry Meadows	4	1	
Chamaecrista nictitans	Dry Meadows	4	2	
Desmodium marilandicum	Dry Meadows	5	2	
Dicanthelium sphaerocarpon	Dry Meadows	4	1	
Dicanthelium depauperatum	Dry Meadows	5	1	
Helianthus divaricatus	Open Woods	6	1	
Juncus secundus	Meadows	6	2	
Lespedeza hirta	Dry Meadows	6	1	
Linum virginianum	Meadows	7	1	

Paronychia fastigiata	Dry Meadows	7	1
Plantago virginica	Dry Meadows	2	1
Solidago ulmifolia	Woods Edges	6	3

23. Springton Manor East Woods. This is a small patch of rich upland mesic forest along the east side of the park. The canopy is tulip to tulip-oak, with a diversity of rich woodland herbs including two state-listed species. Upslope is more tulip woods with less diversity and more aliens, and to the northwest is a stand of planted pines. Sections 16, 17

DRAINAGE: Brandywine	GEOLOGY: Anorthosite, near Brandywine Manor fault			
NOTABLE SPECIES	Habitat	CC	PA Rank	Twp. Freq.
Galearis spectabilis	Rich Woods	6		7
Hydrastis canadensis	Rich Woods	6	PV	2
Pyrola elliptica	Rich Woods	6		4
Trillium cernuum	Forb	6	TU	6
$-l$				

24. Lower Indian Run corridor. This ENA includes over half a mile of good-quality level woods and lower slopes along and near along Indian Run including several types of forest communities, rocky seeps, and a low meadow. Indian Run itself between Rt. 282 and the Brandywine is wooded but disturbed and weedy. Upstream across Springton Road grow possibly good-quality low maple floodplain woods that were not surveyed. Section 16, 10

DRAINAGE: Indian Run GEOLOGY: Anorthosite

NOTABLE SPECIES	Habitat	CC	PA Rank	Twp. Freq.
Aralia racemosa	Rich Woods	6	1	
Asclepias exaltata	Rich Woods	7	3	
Cardamine rotundifolia	Gravelly seeps	8	7	
Carex caroliniana	Meadow	5	1	
Carex torta	Gravel Bars	7	7	
Dryopteris goldiana	Wet rocky Wds	7	1	
Heliopsis helianthoides	Meadow	4	1	
Orobanche uniflora	Rich Woods	6	2	
Thalictrum dioicum	Rich Rocky Wds 6	2		
Sedum ternatum	Floodpl. Woods	7	7	
Symphyotrichum prenanthoides	Floodpl. Woods	6	4	

MANAGEMENT AND PROTECTION PRIORITIES

There are many other areas in the township in addition to the designated Exceptional Natural Areas that have significant native plant species or communities and are worthy of conservation attention. Some of these habitats are undervalued and easily lost by short-sighted management. Some may harbor undiscovered ENAs. They can be described in rough categories:

Forests Areas shaded green as wooded on current USGS topo maps are the oldest in the township, and should be disturbed as little as possible.

Small wetlands. Wetland species can be surprisingly resilient, and even ditches, stream edges, hayfields, and pastures can have a diverse native wetland flora present. No wetland should be considered too small for protection, and existing wetlands should be preserved rather than creating replacement wetlands, which are never as rich and are often invaded by and overwhelmed by invasive aliens.

Ponds. Ponds, especially shallow ones with fluctuating water levels, usually have a specialized group of wetland species growing on their banks and edges, plants which often also grow in stormwater detention basins and larger stream sand/gravel bars. In addition an unmown pond edge can provide habitat not only for plants but for insects and amphibians.

Floodplain forests and woodlands. Most of the stream corridors in the township are wooded for long distances. Keeping these forested corridors intact, even if they contain stretches of younger, alien-infested woodlands, should be a high priority.

Meadows. Open areas managed to sustain native grasses and herbs should be encouraged. There are many opportunities for native meadows, including private land, roadsides, park land and open space managed by homeowner associations.

Roadbanks and Utility Right-Of-Ways. Both of these infrequently maintained corridors can support complex native plant and animal communities. Some of the better-quality wetlands occur where powerlines cross streams. Both roadbanks and ROW's harbor pockets of dry meadow and woodland edge species. Better management could restore dry woodland edge communities which have been nearly eliminated in many places.

The biggest threats to all of these communities are outright destruction, invasive aliens, deer, and indifferent management. The battle with aliens in unending, but can be reduced by long-term management plans that emphasize deer control and strengthening native plant communities. Individual efforts to manage or restore native plant communities of any size could go a long way toward improving the biological health of the township.

THE BIG PICTURE

From our background information-gathering and experience with other 'southern' townships, prior to the actual fieldwork we developed some assumptions regarding the flora of Wallace Township:

- The species total might not reach 800 total species (the average of species per township near the Delaware state line was 836).
- Geology would significantly affect plant distribution in the township.
- There would be more 'northern' species in the township, and some 'southern' species would not be found.
- There might be fewer alien species than in the southern townships.

The assumption of a lower species count than those of southern townships proved to be pessimistic. The total count reached a respectable 825 species, and since not all areas of the township were thoroughly surveyed, further fieldwork would certainly uncover additional species. Wallace also had the highest number of native species and the lowest percentage of aliens of all the townships we have surveyed so far. Out of our aggregate township list of 1178 species, 38 species were observed only in Wallace Township, and only four of those were non-natives, three of which were restricted to the Pennsylvania Turnpike corridor.

Geology proved locally significant in plant distribution. The effect of the Chickies quartzite on the flora was pronounced. One forest community was confined to its upper slope, and a number of species found in the township were either restricted to or were rare away from the quartzite ridge. Among these were several heaths, notably mountain laurel, sheep laurel (Kalmia angustifolia and K. latifolia), and trailing arbutus (Epigaea repens). The effect of anorthosite on plant distribution was less distinct, at least compared to gneiss. Slight differences in soil chemistry were not as influential as similarities of topography and hydrology, especially the influence on land use by the rocky weathering of both anorthosite and gneiss
'Northern' species such as swamp buttercup (Ranunculus caricetorum), big-leaved aster (Eurybia macrophylla) and northern swamp milkweed (Asclepias incarnata v. incarnata) Canada mayflower (Maianthemum canadense), yellow wild licorice (Galium lanceolatum), northern arrowwood (Viburnum recognitum), gray dogwood (Cornus racemosa), marsh marigold (Caltha palustris), bottle gentian (Gentiana andrewsii), poke milkweed (Asclepias exaltata), mountain water-cress (Cardamine rotundifolia), and sandbar sedge (Carex torta) were frequent in Wallace Township, but extremely rare in the southern townships. On the other hand, species such as panic grass (Panicum anceps), Jacob's-ladder (Polemonium reptans), and cranefly orchid (Tipularia discolor) were rare or absent. Loss of habitat and climate change have also influenced the distribution of these species.

Alien species were not only distinctly less abundant in total number of species found (less than 30\%) but in average number per survey section. Many invasives common near Delaware were absent or only found sparingly in the township. Farming, development, and major roads, all providing alien-friendly corridors and habitats, had a smaller aggregate footprint in Wallace then in many other townships. Nonetheless several highly invasive species, notably lesser celandine buttercup (Ranunculus ficaria) and mile-a-minute (Polygonum perfoliatum) are moving into the township.

FUTURE WORK

Wallace Township proved to have too much high-quality habitat to be thoroughly explored in a single field season, especially with access constraints. As a result some potentially significant areas including the old Girl Scout Camp and the Hankin properties were not well surveyed. New species were still being added to the database into January 2007, indicating some gaps in seasonal coverage. In addition extant plant species lists from previous surveys, including from the Great Marsh and an old inventory of Springton Manor were not reviewed for this survey. More thorough surveys of specific parcels would add more information and fill in gaps in this baseline survey

REFERENCES

Brandywine Conservancy, 2004. Upper East Branch Brandywine Creek Watershed Conservation Plan. Chadds Ford, PA.

Chester County Planning Commission. 1973. Chester County Geology. West Chester, PA
Chester County Planning Commission. 1994 with 2000 update. Chester County Natural Areas Inventory. West Chester, PA

Fike, J. 1999. Terrestrial and Palustrine Plant Communities of Pennsylvania. PA Dept. of Conservation and Natural Resources. Harrisburg, PA.

Flora of North America Committee. From 1993. Flora of North America, Vol. 2 -5, 19-23, 25, 26. Oxford University Press. New York, New York.

Gleason, H. and Cronquist, A. 1991. Manual of Vascular Plants of Northeastern United States and adjacent Canada, $2^{\text {nd }}$ ed. The New York Botanical Garden. New York, New York.

Herman, K., et al. 1997. Floristic Quality Assessment: Development and Application in the State of Michigan. Natural Areas Journal, Vol. 17(3)

Rhoads, A. and Block, T. 2000. The Plants of Pennsylvania. University of Pennsylvania Press. Philadelphia, PA. (A second edition is in press)

Rhoads, A. and Klein, W. 1993. The Vascular Flora of Pennsylvania. American Philosophical Society. Philadelphia, PA.

Schultz, C., ed. 1999. The Geology of Pennsylvania. PA Geological Survey. Harrisburg, PA
Stone, H. 1945. A Flora of Chester County. The Academy of Natural Sciences. Philadelphia, PA.
Swink, F. A. and G. Wilhelm. 1994. Plants of the Chicago Region, $4^{\text {th }}$ ed. Indiana Academy of Science. Indianapolis, Ind.

APPENDIX 1

THE PLANTS
 OF WALLACE TOWNSHIP

Based on 2006

 Fieldwork
APPENDIX 1

THE PLANTS OF WALLACE TOWNSHIP

	Families	Species	Natives	Aliens
Ferns	11	32	32	0
Gymnosperms	3	5	3	2
Dicots	93	571	378	193
Monocots	18	217	165	52
TOTAL	125	825	578	247

STATUS: $\quad \mathrm{A}=$ Alien
$\mathrm{PE}=\mathrm{PA}$ Endangered
$\mathrm{PT}=\mathrm{PA}$ Threatened
$\mathrm{PR}=\mathrm{PA}$ Rare
TU $=$ PA Undetermined
PW = PA Watchlist
$\mathrm{PV}=\mathrm{PV}$ Vulnerable
$C C=$ Coefficient of Conservatism
OCCURRENCE CODE (BY SECTION):
First two Digits - Year first recorded $(06,07)$
Third Digit - Month first recorded - A = January, B = February, through $L=$ December Note: 06 blank $=06 \mathrm{G}=$ July, 06
$\mathrm{Q}=$ Questionable, ID, or taxonomic problem
COUNT $=$ Number of sections recorded from
Largest Families
97 - ASTERACEAE (aster family) - 63 native
88 - POACEAB (grass family) - 53 native
63 - CYPERACEAE (sedge family) - 61 native
40 - ROSACEAE (rose family) - 27 native
$30-$ FABACEAE (legume family) -13 native
27 - LAMIACEAE (mint family) - 19 native
25 - LILIACEAE (illy family) - 15 native
25 - BRASSICACEAE (mustard family) - 8 native
Largest genera
49 - Carex (sedges) - 47 native
13 -Viola (violets) - 12 native
11 - Galium (bedstraws) - 8 native
11 - Solidago (goldenrods) - 10 native
10 - Dicanthelium (panic grasses) - 10 native

Nomenclature follows Rhoads and Block, 2000, The Plants of Pennsylvania or the more recent Flora of North America series.
PIERDOPHYTES -FERHS AND FERN ALIES
COUNT

PITERDPPFYTIES-EERHS ANITERN ALIES

WALLACE TOWNSHIP PLANTILST-2000

Rhus glabra
Rhus hirta (typhina) Toxicodendron radicans Toxicodendron vemix Aegopodium podagraria Anthriscus caucalis Cicuta maculata Conium maculatum Cryptotaenia canadensis Daucus carota Hydrocotyle americana Osmorhiza claytonii Osmorhiza longistylis Pastinaca sativa
DICOTS
SGERNIETC NAME

WALLACE TOWNSHIP -2006
DCOTS
SCIENTHIC NAME

Antennaria neglecta Antennaria neodioica ssp. neodioic Antennaria partinii ssp. parlini Anthemis arvensis
Artion Artemisia vulgaris Bidens connata Bidens poolylepis
ea Cichorium intybus Cirsium muticum C Doellingeria umbellata Erechtites hieracifolia
Erigeron annuus Erigeron philadelphicus Erigeron puchellus Eupatorium perfoliatum Eurybia divaricatus Eurybia schreberi Euthamia graminifolia
SCTETIEIC NAME
COUNI

DCEOTS
SCEETHE NAME
-

DHCOTS SCERTITC NAME

DEOTS
strantrume

Dicats
뿔 2
~ ${ }^{\circ} \omega$
$F \cdot$

$$
\leftarrow \forall
$$

$$
+m N \vDash-\infty m a \text { ® }
$$

요
のー・ \qquad $\stackrel{\infty}{\sim}$
$\stackrel{N}{\sim}$ 우

 BITTERSWEET FAMILY

STATUS COMMON MAME

Viburnum prunifolium
Viburnum prunifolium
Vibumum recognitum CARYOPHYLLACEAE Arenaria serpyllifolia Cerastium fontanum Cerastium glomeratum Dianthus armeria
Myosoton aquaticum
Paronychia canadensis
Paronychia canadensis
Sagina japonica
Saponaria officinalis
Silene antirrhina
Silene latifolia
Silene stellata
Stellaria alsine
Stellaria graminea
Stellaria longifolia
Stellaria media
CELASTRACEAE
Celastrus orbiculatus
Euonymus alatus
Euonymus americanus
Euonymus fortunei
CERATOPHYLLACEAE
Ceratophyllum demersum
CHENOPODIACEAE
Chenopodium album
CLUSIACEAE
Hypericum mutilum Hypericum perforatum Hypericum punctatum
Triadenum fraseri
DKCOTS
빈

CORNACEAE
Comus alternifolia Cornus amomum Cornus florida CRASSULACEAE Sedum telephium CUCURBITACEAE sicyos angulatus CUSCUTACEAE Cuscuta gronovii DIPSACACEAE Dipsacus sylvestris Diospyros virginiana ELAEAGNACEAE Elaeagnus umbellata ERICACEAE Epigaea repens Gaylussacia baccata Kalmia angustifolia
Kalmia latifolia
Lyonia ligustrina
Rhododendron periclymenioides
Vaccinium corymbosum

8

Dicits

O\％$\left.\right\|_{0}$			
	$\left\lvert\, \frac{\boxed{y y}}{\circ}\right.$		
응 쑹	¢ 『 ®		¢ ¢ ¢ ¢
$\mid \underset{\text { w }}{ }{ }^{\text {¢ }}$	$\|\%\| \%$		
${ }_{0}^{\text {\％}}$			
응	\％ 8		8 \％
宮			$\|\%\| \%\|\|\%\|\| \% \mid$
	\％ 8 ｜$\overline{8} \mid$		
\％		䓂 \％\％䓂	訔
品｜	$\underset{\sim}{0}\|8\|\|8\|$	¢¢	
吕	匊 ® 등		
8			
8.	\bigcirc ॐ		¢区 \％\％8 8
－${ }_{8}^{8}$	｜8｜ 8		
잉 힝	\％董 8		
0 n	mono－	－	

micors

SGIENTITIC NAME	STAILS	COMMMON NAME	C6	12	34		67	89	110	12 13	14 尔	17	18		COUNT
Trifolium pratense	A	Red clover		06A 06A	A 06A 06C		06C 06D	06D 06D	06D 06F	06C 06D	06D 06D	O6D 06C	06 C 06 C	O6C	20
Trifolium repens	A	White clover		06 F 06 E	E 06A $\overline{06 \mathrm{C}}$		06C 06 D	$\overline{06 D} 06 \mathrm{D}$	06D 06F	O6E 060	$\overline{06 D} 06 \mathrm{D}$	$\overline{06 \mathrm{D}} 06 \mathrm{C}$	06 C 06	$\overline{06 \mathrm{C}}$	20
Vicia cracca	A.	Cow vetch						065							1
Vicia sativa (angustifolia)	A	Common vetch						${ }_{06 F}$							2
Vicia tetrasperma	A	Four-seeded vetch		$06 \overline{06}$	06E							06	\square		4
FAGACEAE		BEECH FAMILY			10 SPE	IES									
Castanea dentata		American chestnut	5	06	06 K				06F		06	06106		06	7
Fagus grandifolia		American beech	6	O6A 06 D	D 06A 06 C		C 06	06D 06	06D 060	-06C 060	OBE 06D	06D	$\overline{06 C}$	06C	20
Quercus alba		White oak	4	O6A 08 A	A 06406		O6C 065	O6D 060	06D 06 D	06C 060	O6D 06 D	$\overline{06 \mathrm{D}}$	06E	$\overline{06 C}$	20
Quercus bicolor		Swamp white oak	7		06J $\overline{06 \mathrm{~K}}$		06 C	$\overline{07 A}$	06 D	06C	06 06F	06	$\overline{06 C}$		10
Quercus coccinea		Scarlet oak	4		065				06 L			061		$\overline{06 C}$	6
Quercus montana		Chestnut oak	6	06 D	D $06 \mathrm{D} \overline{06}$		07A	$\overline{06 D} 06 F$	060		$\overline{06 E} 06 \mathrm{D}$	06D 06	06F		14
Quercus muhlenbergii		Yellow oak	8							06					1
Quercus palustris		Pin oak	3	06A 06 A	A 06A $\overline{06 \mathrm{C}}$		06C 06 C	O6D 06 D	$\overline{06 H} 06 \mathrm{D}$	06C 06D	$\overline{06 E} 06 \mathrm{E}$		${ }^{06}$		17
Quercus rubra		Red oak	4	O6E 06A	A 06A 06		06C 06C	06D 06F	060 06D		06E 06D	O6 06E	$\overline{06}$ O6E	$\overline{06 C}$	19
Quercus velutina		Black oak	4	OBE 06D	D 06D 06C	C	07A 06D	06 06E	06E 06D	06C 06E	06 06F	06D 06C	06 O6E	06C	20
FUMARIACEAE		FUME-ROOT FAMILY			1 SPE	IES									
Dicentra cucullaria		Dutchman's breeches	7		06 D								O6E O6E	06E	4
GENTIANACEAE		GENTIAN FAMILY			3 SPEC	IES									
Bartonia virginica		Bartonia	7	06F 06											2
Gentiana andrewsii		Bottle gentian	8	06				061		06	- 06 F				4
Obolaria virginica		Pennywort	7		06K										1
GERANIACEAE		GERSANIUM FAMILY			2 SPEC	IES									
Geranium columbinum	A	Long-stalked cranesbill					06E								1
Geranium maculatum		Wild geranium	4	06E 06	D $060 \overline{06 D}$		O6D 06 D	$\overline{06 \mathrm{D}} 06 \mathrm{D}$	$\overline{06 D} 06$	06C 06 D	06D 06	06D 06E	$\overline{06 E} 06$	$\overline{\text { 06E }}$	20
HALORAGACEAE		WATER-MILFOIL FAMILY			1 SPE	IES									
Myriophyllum spicatum	A	Eurasian water-milfoil												06E	1
HAMAMELIDACEAE		WITCH-HAZEL FAMILY			1 SPE	IES									
Hamamelis virginiana		Witch-hazel	6	06H 06	06D 06E		06 D 06 D	06D 06D	060060		O6E 06E	OBE O6C	O6E 06E	06C	18
HYDROPHYLLACEAE		WATERLEAF FAMILY			1 SPE	IES									
Hydrophyllum virginianum		Virginia waterleaf	6		06D		06E 06D			06E				06	7

DICOTS
SCENTPRG NAMIE

dicits

DREIS

DCOTS

DGEOTS

DICITS
 둑
megts
SCEFITIG NAME

SCIENITIG NAME	STATILS	COMMON NAME	66		23	45	67	88	1011	12 亿	14 兵	187	18 \%	20	COENT
Rubus occidentalis		Thimbleberry	1		06A 06A	06C 06C	06 C 06 C	06D 06D	060060	D 06C 06E	$06006 \mathrm{D}$	$06 \mathrm{D} 06 \mathrm{D}$	06 C 06 C		20
Rubus phoenicolasius	A	Wineberry		O6A	$\overline{064} 06 \mathrm{~A}$	$\overline{06 \mathrm{C}} 06$	$\overline{06 C \mathrm{C}} 066$	-06D 06D	$\overline{06 D} 06 \mathrm{D}$	$\overline{06 \mathrm{E}} 06 \mathrm{D}$	06 D 06 D	$\overline{06 D} 06$	06C	O6C	20
Sanguisorba canadensis		Canadian burnet	7		$\overline{06 E}$										1
Spiraea alba		Narrow-leaved meadowsweet	6		${ }_{06}$				06 D					-	3
Spiraea latifolia		Meadow-sweet	6				-			06 D		-	-	-	3
RUBIACEAE		MADDER FAMILY				SPECIE									
Cephalanthus occidentalis		Buttonbush	7		06					O6E				06	4
Galium aparine		Cleavers	1		O6D 06	O6D 06E	06C 06 D	06E 06	06D 06D	$\overline{06 E} 06 \mathrm{E}$	06D 06D	06D 06	06E 06	06E	20
Galium asprellum		Rough bedstraw	5		06				06 F	06E					5
Galium circaezans		Wild white licorice	5		06D 06 D	06E 060	$\overline{06 \mathrm{D}} 06 \mathrm{~F}$	06E 06E	06D 060	0606	06D 06D	06E 06	06F 0	O6E	20
Galium lanceolatum		Yellow wild licorice	6		06 D	06E 06E				06					5
Gatium mollugo	A	Wild madder		O6E	$\overline{06 A} 06 A$	$\overline{06 C} 06 \mathrm{D}$		$\overline{06 E} 06 \mathrm{~F}$	$\overline{06 \mathrm{D}} 06$	$\overline{06 C} 06 \mathrm{E}$	06E 060	$\overline{06 \mathrm{D}} 06 \mathrm{C}$	$\overline{06 \mathrm{C}}$	OBC	20
Galium obtusum		Swamp bedstraw	5		$\overline{06 E}$	-	06E					06	06F		5
Galium odoratum	A	Sweet woodruff							061						1
Galium pilosum		Hairy bedstraw	5				06E		06J						2
Galium tinctorium		Swamp three-petalled bedstraw	4	06F	06	06 Q 0	06	06 06F	06H 06F	06 06F	06 F	06 H		O6E	13
Galium triflorum		Sweet bedstraw	3	O6E	$\overline{06 \mathrm{D}} 06 \mathrm{D}$	O6E 06E	$\overline{06 \mathrm{D}} 06 \mathrm{C}$	06	06 D 06	06E 06E	$\overline{06 D}$ 06E	$\overline{06 E} 06 \mathrm{D}$	06E	O6C	20
Galium verum	A	Yellow bedstraw							06J						1
Mitchella repens		Partridgeberry	5	06A	06A 06 D	06E 06E	$\overline{06 \mathrm{C}}$	06D 06 D			O6E 06E	$\overline{06 D} 06 \mathrm{D}$			15
RUTACEAE		RUE FAMILY				SPECIE									
Phellodendron japonicum	A	Japanese cork-tree									06E	06 H			2
SALICACEAE		WILLOW FAMILY				SPECIE									
Populus grandidentata		Bigtooth aspen	3	OBA	06A	06 C	06C 06 C	06 D	060	06C 06F	06E 06D	06C	06F 06C		14
Salix babylonica	A	Weeping willow													1
Salix humilis v. humilis		Upland willow	7									06D			1
Salix nigra		Black willow	2	06A	07A 065		06 D	06		$\overline{06 C} 06 \mathrm{D}$	06 F	06 E 06 H	$\overline{06 E} 06$	06C	15
Salix species		Willow			06			06	06 F	06F					4
SAXIFRAGACEAE		SAXIFRAGE FAMILY				SPECIE									
Chrysosplenium americanum		Golden saxifrage	7		08A 06			O6D 06E	06D 06D	06D	06D 06E				11
Heuchera americana		Alumroot	3		$06 J$							060	06F		5
Mitella diphylla		Bishop's-mitre	8				$\overline{06 E}$				06E				2
Penthorum sedoides		Ditch stonecrop	3		06E	08D				06E		06			5
Saxifraga pensylvanica		Swamp saxifrage	8		06E				06 F						2
Saxifraga virginiensis		Early saxifrage	6						O6D				06		2
WALLACE TOWNSHIP														ge 18	

DCOTS

DCOTS
SCERTIRC NAME

DKCOTS

SCENTIFIC NAME	.	STATUS COMMON NAME	C6	1	2	3	4	5	6	7	8	8	10	11	12	13	4	15	10				COURT
Vitis aestivalis		Summer grape	4		06E	06J		06E	06	06	06	06F		06	06	06E	06E	06F	06E				19
Vitis labrusca		Fox grape	4		06E		06E		06E		06E				06E		06E						20
Vitis vulpina		Frost grape	1	06A	$\overline{06 E}$	06E	06 E	06C	06 C		06		06E	06F	06C	06E	06D	06F					20

mohacois
SEIFHITITC NAME

MONOCOTS

SEIERTIETC NAME	STAIUS	COMMMON HAME	C6	123	4	5	67	8	8	10 11	12 R	14 行	1017	18 明	20	CIUNT
Carex gracillima		A sedge	5		06E	E6E	06E 06F	06E 0	66E	06E 06F	06E 06F	06 06E	06E	06F		14
Carex gynandra		A sedge	7													1
Carex hirsutella		A sedge	4	06F 06				06						06	-	7
Carex hirtifolia		A sedge	3		06		06E 06D			06D 0	O8C	06 D 06	06D	06E 0	06E	7
Carex inturnescens		Swollen sedge	σ			06E	06 F	06E				O6E 06				7
Carex lacustris		Lake sedge	8	07A 06						06F				-		3
Carex laevivaginata		A sedge	4			06 E	06F	06E 0			06E 06F	06E		06 F	06E	9
Carex laxiculmis		A sedge	5	$06 \mathrm{H} \quad 06$	06E	06E	$\overline{06 D} 06$			O6E 06	06	$\overline{06 E} 06$	06E 06	0606	06E	18
Carex laxiflora		A sedge	4	06E						06E		-		06	06	6
Carex leptalea v. leptalea		A sedge	7							06 F						2
Carex lurida		Sallow sedge	1	06F 06E 06E	06	06	06 E 06F	06E	6 F	06H	06E 06F	06F 061	06E 06H	06F	06	18
Carex mesochorea		Midland sedge	4													1
Carex normalis		A sedge	3	06						06E 06			$\overline{0606}$	$\overline{06 F}$	06E	11
Carex pensylvanica		A sedge	5	06 J	06		$\overline{06 \mathrm{D}} 06 \mathrm{~F}$			$\overline{06 \mathrm{D}} 06 \mathrm{D}$			06E	$\overline{06 F}$	06E	13
Carex prasina		A sedge	7		06E		06 E			06E 06		06E	06			7
Carex radiata		A sedge	2	06E - 06 E	$\overline{06 E}$	06E	06E 06F			O6H 06 E	O6E 06E	06E 06F	O6E 06E	06F 0	06E	19
Carex rosea		A sedge	3				$\overline{06 E} 06 \mathrm{~F}$			$\overline{06 E}$	06			$\overline{06 F}{ }_{06}$		8
Carex scoparia		Crowded sedge	2	06F $\overline{06 E}$	06			06	6 F	$\overline{06 \mathrm{H}}$	06 06F	061		$\overline{06 F}$		12
Carex sparganioides		A sedge	3							06		06		06		3
Carex spicata	A	A sedge							6F				06	06		3
Carex squarrosa		Squarrose sedge	6		06E			06E			06E 06F					6
Carex stipata		A sedge	2	06F $\overline{06 E} 06 \mathrm{E}$	06E		06E 06F	06E		06H 06F	O6E 06F		$\overline{06 E}$	$\overline{06 F}$		14
Carex striatula	PW	A sedge	6	06 E								$\overline{06 E}$.			2
Carex stricta		Tussock sedge	5	06A 050	O6C	O6E	06C 06F	06E		$\overline{06 \mathrm{H}} 06$	$\overline{06 E} 0$	06			06E	15
Carex stricta v. strictior		Rhizomatous tussock sedge	5	$\overline{08 E}$		06E										2
Carex styloflexa	PW	A sedge	7					06			06F					2
Carex swanii		A sedge	3	06F 06E 06E	06	06 E	06E 06F	06E 0	6 E	06H 06F	06 06F	06E 06F	0606	06F 06E	06	20
Carex texensis	A	A sedge					06E									1
Carex torta		Sandbar sedge	7							$\overline{060} 06$	06E	$\overline{06 D}$	$\overline{06 E}$	06	06E	7
Carex tribuloides		A sedge	2	06											06	2
Carex umbellata		A sedge	5					06E				06 D				2
Carex virescens		A sedge	4	08												1
Carex vulpinoidea		A sedge	2	06F 06 06E	06			06	6 F		06		06	$\overline{06 F} 06$	06	15
Cyperus esculentus		Yellow nutsedge	0	$\overline{06 H}$		06H	06 H	06				06		06		7
Cyperus flavescens		Umbrella-sedge	1			06 H		061							-	2
Cyperus strigosus		A flatsedge	2	081061	$\overline{06 \mathrm{H}}$			06		$\bigcirc{ }^{06 H} 06 \mathrm{H}$	$\overline{06} 08 \mathrm{H}$	061	$\overline{06 H} 06 \mathrm{H}$		06	13

manocots

MONOCOTS
SGENITIC HAME

SCENTITE NAME	STATUS	COMMON HAME	66		23.	45	67		88	1011	12 \%	14 \%	117	18		COUNI
Allium vineale	A	Field garlic			06A 06A	06C 06C	06 C 06		06D 06D	06D 06D	06C 06D	06D 06D	06D 06C	06C 06C	06C	20
Asparagus officinalis	A	Asparagus			06E 06E					06J	06 H		06.06 H			8
Chamaelirium luteum		Fairy-wand	8			06K										
Convallaria majalis	A	Lily-of-the-valley									06					
Erythronium americanum		Trout fily	4		060	06D 06E	06 D 06		O8D O6D	06D	06C	06D	06D	06E	06E	17
Galanthus nivalis	A	Snowdrops				-				$\overline{06 \mathrm{D}} 06 \mathrm{D}$	06C					5
Hemerocallis fulva	A	Orange daylily		06 H	06D	06C 06E	0606	D	06D 06D	06D 06D	06E	06D 06D	06D 06D	O6E 06	06C	18
Hosta ventricosa	A	Plantain-lily									06E	06 E	06	06		4
Hypoxis hirsuta		Yellow star-grass	5		$\overline{06 E}$				06E 0	06E	- ${ }_{06 F}$. 06 E			-	6
Lilium canadense		Canada lily	6	O6E	$\overline{060}$	O6E 06E	$\overline{06 D}$		06 06F	06F	06F	O6E		06F		11
Maianthemum canadense		Canada mayflower	6	06D	06D 06D	06 E			06E 06F		06 06F	06E	06E			11
Maianthemum racemosum		False solomon's-seal	5	O6E	06 D 06 D	06E 06E	$\overline{06 D} 06$		06 E 06E	$\overline{06 E} 06$	06E 06	$\overline{06 E} 06$	06E 06	06E 06	06E	20
Medeola virginiana		Indian cucumber-root	5		06E	O6E 06E	$\overline{060}$					06	06 E		06	9
Muscari botryoides	A	Grape-hyacinth								06D 06D				06E		3
Narcissus pseudonarcissus	A	Daffodil				$\overline{06 C}$				$\overline{06 D} 06 \mathrm{D}$			-		06E	5
Ornithogalum umbellatum	A	Star-of-bethlehem			06D	O6C 06 C				06D 06 D	$\overline{06 \mathrm{C}}$	06D 06	06E		06C	15
Polygonatum biflorum		Solomon's-seal	5		06.	O6D O6E		0	06 06E	$\overline{06 E} 065$	06E 06	06	061 06E		06	17
Polygonatum canaliculatum		Great solomon's-seal	6											06	06	6
Polygonatum pubescens		Hairy solomon's-seal	5	06F	060 06D	06E 06E	$\overline{06 D} 06$		06E 06E	O6E 06D		$\overline{06 E} 06 \mathrm{E}$	$\overline{06 E} 06$	O6E	06E	19
Trillium cernuum v. cernuum	TU	Nodding trillium	6			06E 06E	06 E					06 E	06 E			6
Uvularia perfoliata		Perfoliate bellwort	6		0606	06E	$\overline{06 D}$			06 D		$\overline{06 E} 065$	06106	$\overline{06 F}$	06	11
Uvularia sessilifolia		Sessile bellwort	6	06E	06D 06L		06E 06		06E 06E	06F		06E 06E	06 H 06 E			13
Veratrum viride		False hellebore	6			06D	060		06 D	06 D		06 E				5
NAJADACEAE		WATER-NYMPH FAMILY				SPECIE										
Najas minor	A	Water-nymph											06		06	2
ORCHIDACEAE		ORCHID FAMILY				SPECIE										
Epipactis helleborine	A	Hellborine orchid											06			1
Galearis spectabilis		Showy orchis	6			06					06	06E 06	O6E 06E		-	7
Goodyera pubescens		Downy rattlesnake-plantain	6	07A		$\overline{06 \mathrm{~K}}$										2
Platanthera lacera		Ragged fringed orchis	4								06F	06F				2
Spiranthes cernua		Nodding ladies'-tresses	6		061 06J				061		061	061				5
POACEAE		GRASS FAMILY				SPECIE										
Agrostis gigantea	A	Redtop		06F 0	0606	0606			0606	0606	$06 \mathrm{C6H}$	061	0606	0606		16
Agrostis perennans		Upland bent-grass	2	06 H	061	06C			061065	06H 06		06 06,	061 07A	061	06	15
WALLACE TOWNSHI															Page	

MOHOCOTS
SCENTRIG NAME

SCENTIPIC NAME	STATIS	COMHON NAME
Agrostis stolonifera	A	Creeping bentgrass
Andropogon gerardii		Big bluestem
Andropogon glomeratus	PR	Broom-sedge
Andropogon virginicus		Broomsedge
Anthoxanthum odoratum	A	Sweet vernal grass
Aristida dichotoma		Poverty grass
Arrhenatherum elatius v . elatius	A	Tall oatgrass
Arthraxon hispidus	A	A grass
Brachyelytrum erectum		Brachyelytrum grass
Bromus commutatus	A	Hairy chess
Bromus inermis	A	Awnless brome-grass
Bromus pubescens		Canada brome
Bromus sterilis	A	Barren brome
Calamagrostis canadensis		Canada bluejoint grass
Chloris verticillata	A	Windmill grass
Cinna arundinacea		Wood reed-grass
Dactylis glomerata	A	Orchard grass
Danthonia compressa		Northern oat-grass
Danthonia spicata		Wild oat-grass
Dicanthelium acuminatum		A panic-grass
Dicanthelium boscii		A panic-grass
Dicanthelium clandestinum		Deer-tongue grass
Dicanthelium commutatum		A panic-grass
Dicanthelium depauperatum		Poverty panic-grass
Dicanthelium dichotomum		A panic-grass
Dicanthelium latifolium		Broad-leaved panic-grass
Dicanthelium polyanthes	PW	A panic-grass
Dicanthelium sphaerocarpon		A panic-grass
Dicanthelium yadkinense	TU	Yadkin river panic-grass
Digitaria ischaemum	A	Crabgrass
Digitaria sanguinalis	A	Crabgrass
Echinochloa crus-galli	A	Barnyard grass
Echinochloa muricata		Barnyard grass
Eleusine indica	A	Goose-grass
Elymus hystrix		Bottlebrush grass
Elymus riparius		Riverbank wild-rye

MONOEOTS
SGERITRIC NAME

SCEENTHIC NAME	STATILS	COMMON HAME	66				45	67	88	1011	12 \%	14 行	10.7	18	的 28	GOUNT
Elymus villosus		Hairy wild-rye	4							06					0606	3
Elymus virginicus		Virginia wild-rye	3												06	
Elytrigia repens	A	Witch grass		06F	06		06	06	06 06F	060	06	06	06		06	15
Eragrostis frankii		Frank's lovegrass	0							O6H						
Eragrostis minor	A	Smaller stink-grass								$\overline{06 \mathrm{H}}$	06 H		06H	06		
Eragrostis pectinacea		Carolina lovegrass	0				06H				06		06 H	061	061	5
Eragrostis spectabilis		Tumble grass	1	07A	06D 0		06 K		06D	06 D	06	061	06 D	06 C 06	06C	12
Festuca elatior	A	Meadow fescue		06A	06A		O6C 06C	$\overline{06 \mathrm{C}} 06$	$\overline{060}$	06D 06	$\overline{08 \mathrm{C}} 06$	$\overline{\text { O6D }}$	$\overline{06 D}$	$\overline{06 \mathrm{C}} 06$	${ }^{66 C} \overline{06 C}$	20
Festuca obtusa		Woodland fescue	3				O6E 06E	06E 06	06	$\overline{06 E} 06 F$	06E 06E	O6E	$\overline{06 E}$ 06E	0606	06E 06E	17
Festuca rubra	A	Red fescue							06 F	06						2
Festuca trachyphylla	A	Hard fescue								OSE		06F				3
Glyceria canadensis		Northern manna-grass	7													1
Glyceria striata		Fowl manna-grass	3		06E		$06 \mathrm{O5H}$	$\overline{\text { 06E }} 06$	06	$\overline{06 H} 06 \mathrm{~F}$	O6E 06	$\overline{06 E} 06$	$\overline{06} 06$	06	06	18
Holcus lanatus	A	Velvet grass		06 F			06E				06E					5
Leersia oryzoides		Rice cut-grass	2	065	061		06H 06	06	06	06H 06H	06	061	06 06H	06F	06	15
Leersia virginica		White grass	2	06E			06H 06	06E 06	06E 06F	$\overline{05 H} 06$	$\overline{06 E} 06 \mathrm{~F}$	O6E 0	$\bigcirc 0^{06 \mathrm{E}} 06 \mathrm{H}$	$\overline{06 F} 06$	06 06E	19
Lolium perenne	A	Perennial rye-grass		$06 F$	06E			0606		$\overline{06} 06$	06		06			9
Microstegium vimineum	A	Japanese stilt-grass		06A	06A 0		O6C 06 C	$\overline{06 C} 06$	$\overline{06 D} 06$	$\overline{06 \mathrm{D}} 06 \mathrm{D}$	$\overline{06 C} 06$	06D 0	06D 06C	06C 06 C	66C O8C	20
Miscanthus sinensis	A	Japanese plumegrass			$\overline{06 D}$											1
Muhlenbergia frondosa		Leafy muhly	1	06					06	$\overline{06 J} 06$	06	06	$\overline{06 \mathrm{H}}$			8
Muhlenbergia mexicana		Satin grass muhly	5						061	06J		06 J				4
Muhlenbergia schreberi		Nimblewill	0	06A	06 A		O6C 066	$\overline{06 \mathrm{C}} 06$	06D 06	06D 06	$\overline{08 \mathrm{C}} 06 \mathrm{H}$	$\overline{06 D} 0$	$\overline{06 \mathrm{D}} 06 \mathrm{C}$	$\overline{06 \mathrm{C}} 06 \mathrm{C}$	6c 0	20
Muhlenbergia tenuiflora		Woodland muhly	5							06H						1
Panicum anceps		A panic-grass	4		061					$\overline{06 H}$			H			6
Panicum dichotomiflorum		A panic-grass	0	06A			05\% 0		081				$\overline{06 H}$		61	10
Panicum philadelphicum	- A	A panic-grass	1						061			06				3
Panicum rigidulum		A panic-grass	6		061		06 H 06 H									3
Panicum virgatum	A	Switch-grass												061	61	1
Paspalum laeve		Bead-grass	3		061		06H						06H			3
Paspalum setaceum		Bead-grass	3	0	061					$\overline{06 H}$				06		6
Phalaris arundinacea	A	Reed-canary grass		06F	061		06 C 06	$\overline{06}$	O6D	$\overline{06 D} 06 \mathrm{D}$	06E	$\overline{06 D}$	O6D	O6C 06 C	${ }_{6 C} \overline{06 C}$	20
Phleum pratense	A	Timothy		06 F	06		0606	06	06	$\overline{0606}$	06	06	$\overline{06} 06$	06	06	17
Phragmites australis	A	Giant reed		06 A	06		DEE	06 C					06D		6 E	10
Poa annua	A	Annual bluegrass		07A	$\overline{06 A}$		O6E 06	06C	06	06D	06 E	$\overline{06 D}$	06 D	06C 06E	6E 06C	20
Poa compressa	A	Canada bluegrass		06E	06D		06060	06 06F	O6E 0	06E 06	06	06E	06 06E	06F 06E	6E 06	20
Poa paludigena	PR	Marsh bluegrass	10							06 F						1

MONECOTS

SCERMTMIC NAME	STATLS	COMMON NAME	66	123	45	67	88	1011	12 T3	314	15	17	18 ผ่	20	COUNI
Poa pratensis	A	Kentucky bluegrass		06E 06E 06E	06E 06D	06E 06D	06E 06D	06E 06F	06C 06E	E 06F		06E 06C	06C 06C	06E	20
Poa sylvestris		Woodland bluegrass	4					- Q_{6}				-	$\overline{06 F} 06 \mathrm{E}$	$\overline{06 E}$	2
Poa trivialis	A	Rough-stemmed bluegrass		O6E $\overline{061} 06$	O6E 06E		$\overline{06 E} 06$	$\overline{060} 06 \mathrm{D}$	$\overline{06 E} 06 F$			$\overline{06 E} 0$	$\overline{06 E}$		17
Schizachyrium scoparius		Little bluestem grass	4				$\overline{06 \mathrm{D}}$	$\overline{06 D}$					-	06C	5
Setaria faberi	A	Giant foxtail grass		06A $\overline{06 A} 06 A$	$\overline{06 \mathrm{C}}$	06	06 06F	06	06C	D 06		$\overline{06 \mathrm{H}}$	H6	$\overline{06 \mathrm{C}}$	20
Setaria geniculata		Slender foxtail grass	3		06H			$\overline{06 \mathrm{H}}$				${ }_{06}$			4
Setaria pumila	A	Yellow foxtail		06A 06D 06A	06H 06H	10606 C	060	06 H 06 H	06C 08H		06J	06H	06C		16
Setaria viridis	A	Green foxtail													6
Sorghastrum nutans		Indian grass	5	06J			06E		- 06 D	D		06E	06	-	7
Sorghum halepense	A	Johnson grass			-							$\overline{06 \mathrm{H}}$	-		1
Sphenopholis obtusata v. major		Wedgegrass	4	06E		06F	06E	06F				06	06F 06		8
Sphenopholis pensylvanica		Swamp oats	8	O6E											1
Sporobolus vaginiflorus		Poverty-grass	1	06A	$\overline{06 \mathrm{~K}}$										3
Tridens flavus		Purpletop	1	06A $\overline{06 A} 06 A$	$\overline{06 C} 06 \mathrm{C}$	06C 06C	$\overline{06 D} 06 \mathrm{D}$	$\overline{060} 06 \mathrm{~L}$	$\overline{06 \mathrm{C}} 06 \mathrm{E}$			06D 06 C	$\overline{06 \mathrm{C}}$	06C	19
POTAMOGETONACEAE		PONDWEED FAMILY			SPECIE										
Potamogeton crispus	A	Crimped pondweed		OSE		06F								OSE	3
Potamogeton nodosus		Longleaf pondweed	5											$\overline{06 E}$	1
Potamogeton pusillus		Slender pondweed										06			1
SMILACACEAE		GREENBRIER FAMILY			SPECIE										
Smilax glauca		Glaucous greenbrier	3	O6H O6D 06E	06C 06E	O6C 08C		06 D 06 D	06 C 060	D 06 D	060°	06D 06 C	06C 06	06C	19
Smilax herbacea		Carrion-flower	5	O6E 06E 06J	06E 06E	06E 06F	O6E O6E	06E 06F.	0606 E	E. 06 E	06E	06 06E	06F 06	06E	20
Smilax pulverulenta		Hairy carrion-flower	5	06E			O6E	$\overline{06 E} 06$	06			06E 0		05	13
Smilax rotundifolia		Round-leaved greenbrier	3	06A $\overline{06 A} 06$	06C 08C	$\overline{06 C} 065$	06D 06D	06D 06 D	$\overline{06 \mathrm{C}} 06 \mathrm{D}$	D $\overline{06 \mathrm{D}}$	06 D	$\overline{06 \mathrm{D}} 06 \mathrm{C}$	$\overline{06 \mathrm{C}} 06$	06E	20
Smilax tamnoides		Bristly greenbrier	6		$\overline{06 \mathrm{~K}}$	06 D	06 E	$\overline{06 E}$				06 E			5
SPARGANIACEAE		BUR-REED FAMILY			SPECIE										
Sparganium americanum		Common bur-reed	7	O6E 06E 06D			06							06	5
TYPHACEAE		CAT-TAIL FAMILY			SPECIE										
Typha angustifolia		Narrow-leaved cattail	1	06F				06H							2
Typha latifolia		Cattail	1	06E $\overline{06 E} 06$	$\overline{06 \mathrm{C}}$	$\overline{06 C} 06 \mathrm{C}$	$\overline{060}$	$\overline{06 H} 06 \mathrm{D}$				$\overline{06 D} 06 \mathrm{C}$	$\overline{06 \mathrm{C}} 06 \mathrm{C}$	06E	15

APPENDIX 2

TREES AND SHRUBS
 OF
 WALLACE TOWNSHIP

Based on 2006

 Fieldwork
APPENDIX 2-A WALLACE TOWNSHIP TREES - 2006 STATUS

COUNT

MAPLE FAMILY	ACERACEAE			
Acer negundo	Box elder	2	Woods, floodplain, thickets	5
Acer palmatum	Japanese maple	A	Woods, thickets	3
Acer platanoides	Norway maple	A^{*}	Woods	20
Acer pseudoplatanus	Sycamore maple	A	Thickets, woods	3
Acer rubrum	Red maple	1	Woods	20
Acer saccharinum	Silver maple	3	Woods, floodplain	6
Acer saccharum	Sugar maple	5	Woods, rich	14
CASHEW FAMILY	ANACARDIACEAE			
Rhus copallina	Shining sumac	4	Fields, dry, thickets	3
Rhus glabra	Smooth sumac	3	Thickets, old fields	16
Rhus hirta	Staghorn sumac	1	Fields, old, thickets	4
HOLLY FAMILY	AQUIFOLIACEAE			
liex opaca	American holly	5	Woods	12
GINSENG FAMILY	ARALIACEAE			
Aralia elata	Asian hercules-cfub	A^{*}	Woods, disturbed	1
BIRCH FAMILY	BETULACEAE			
Alnus glutinosa	Black alder	A^{*}	Streamsides, thickets	2
Betula lenta	Cherry birch	4	Woods, dry	16
Betula populifolia	Gray birch	2	Fields, dry, thickets	2
Carpinus caroliniana ssp. virgini	Ironwood	5	Woods	20
Ostrya virginiana	Hop hornbeam	6	Woods, rocky	11
BIGNONIA FAMILY	BIGNONIACEAE			
Catalpa bignonioides	Catalpa	A	Roadsides, waste places	4
Paulownia tomentosa	Princess-tree	A^{*}	Woods, thickets	6
POINCIANA FAMILY	CAESALPINIACEAE			
Gleditsia triacanthos	Honey locust	A	Woods, thickets	7
DOGWOOD FAMILY	CORNACEAE			
Cornus alternifolla	Pagoda dogwood	5	Woods, rich	17
Cornus florida	Flowering dogwood	5	Woods, rich	20
CYPRESS FAMILY	CUPRESSACEAE			
Juniperus virginiana	Red cedar	2	Fields, old	20
EBONY FAMILY	EBENACEAE			
Diospyros virginiana	Persimmon	5	Thickets, oid fields	1
LEGUME FAMILY	FABACEAE			
Robinia pseudo-acacia	Black locust	A^{*}	Woods, thickets	18
BEECH FAMILY	FAGACEAE			
Castanea dentata	American chestnut	5	Woods	7
Fagus grandifolia	American beech	6	Woods	20
Quercus alba	White oak	4	Woods	20
Quercus bicolor	Swamp white oak	7	Woods, low moist	10
Quercus coccinea	Scarlet oak	4	Woods	6
Quercus montana	Chestnut oak	6	Woods, dry	14

STATUS
COUNT

LAUREL FAMILY
Lindera benzoin
OLIVE FAMILY
Ligustrum obtusifolium
BUCKTHORN FAMILY
Ceanothus americanus
ROSE FAMILY
Aronia arbutifolia
Aronia melanocarpa
Photinia villosa
Rosa carolina
Rosa multiflora
Rosa palustris
Rubus allegheniensis
Rubus flagellaris
Rubus hispidus
Rubus occidentalis
Rubus phoenicolasius
Spiraea alba
Spiraea latifolia
MADDER FAMILY
Cephalanthus occidentalis

WILLOW FAMILY

Salix humilis v. humilis
BLADDER-POD FAMILY
Staphylea trifolia
YEW FAMILY
Taxus cuspidata

LAURACEAE

Spicebush
OLEACEAE
Broad-leaved privet
RHAMNACEAE
New Jersey tea
ROSACEAE
Red chokeberry
Black chokeberry
Photinia
Pasture rose
Multifiora rose
Swamp rose
Blackberry
Dewberry
Swamp dewberry
Thimbleberry
Wineberry
Narrow-leaved meadows
Meadow-sweet
RUBIACEAE
Buttonbush
SALICACEAE
Upland willow
STAPHYLEACEAE
Bladdernut
TAXACEAE Japanese yew

2 Woods

A* Thickets, waste places 20

7 Thickets, dry fields, barren 1

7 Swamps, thickets 5
7 Bogs, low woods, edges 1
A * Woods 1
5 Fields, dry, thickets 12
A* Fields, thickets, woods 20
7 Marshes, swamps 11
1 Fields, thickets 20
1 Fields, thickets 19
6 Swamps, low woods 6
1 Fields, thickets 20
A $^{*} \quad$ Fiedds, thickets 20
6 Marshes, wet fields 3
6 Meadows, streamsides 1

7 Marshes, swamps 4

7 Fields, dry, barrens 1

5 Woods, floodplain 13

A Woods 2

STATUS: $A=$ Alien, $A^{*}=$ Invasive alien Number=Coefficient of Conservatism

COUNT $=$ Number of sections seen in out of 20 sections

APPENDIX 2-B

WALLACE TOWNSHIP SHRUBS - 2006
STATUS
COUNT

CASHEW FAMILY
Toxicodendron vernix
HOLLY FAMILY
llex crenata
llex verticillata
BARBERRY FAMILY
Berberis thunbergii
BIRCH FAMILY
Alnus serrulata
Corylus americana
POINCIANA FAMILY
Cercis canadensis
HONEYSUCKLE FAMILY
Lonicera maackii
Lonicera morrowil
Sambucus canadensis
Symphoricarpos orbiculatus
Viburnum acerifolium
Viburnum dentatum
Viburnum dilitatum
Viburnum lentago
Viburnum plicatum
Viburnum prunifolium
Viburnum recognitum
BITTERSWEET FAMILY
Euonymus alatus
Euonymus americanus
Euonymus fortunei
DOGWOOD FAMILY
Cornus amomum
Cornus racemosa
OLEASTER FAMILY
Elaeagnus umbellata
HEATH FAMILY
Gaylussacia baccata
Kalmia angustifolia
Kalmia latifolia
Lyonia ligustrina
Rhododendron periclymenioides
Vaccinium corymbosum
Vaccinium pallidum
Vaccinium stamineum
WITCH-HAZEL FAMILY
Hamamelis virginiana

ANACARDIACEAE
Poison sumac
AQUIFOLIACEAE
Japanese holly
Winterberry
BERBERIDACEAE
Japanese barberry A^{*} Woods . 20

BETULACEAE

Common alder
American hazelnut

CAESALPINIACEAE

Redbud
CAPRIFOLIACEAE

Amur bush-honeysuckie	A^{*}	Fields, thickets	20
Morrow's bush-honeysuck	A^{*}	Fields, thickets	15
Elderberry	3	Thickets, low woods	19
Coralberry	A	Thickets, waste places	2
Maple-leaved viburnum	5	Woods	19
Southern arrowwood vibur	3	Woods, swamps	20
Linden viburnum	A^{*}	Woods, disturbed	5
Nannyberry	5	Thickets, wet woods	2
Doublefile viburnum	A*	Thickets, waste places	1
Black-haw	2	Thickets, old fields, woods	20
Northern arrowwood vibur	6	Swamps, low woods	7

CELASTRACEAE

Winged burning-bush $A^{*} \quad$ Woods 19
Running strawberry bush 5 Woods, low, thickets 1
Wintercreeper $\quad A^{*} \quad$ Woods, thickets, housesite 1

CORNACEAE

Swamp dogwood
Panicled dogwood
ELAEAGNACEAE
Autumn olive
A* Fields, old thickets 19
3 Marshes, thickets, low are 20
3 Fields, moist, thickets 5

ERICACEAE
Black huckleberry
Sheep laurel
Mountain laurel
Maleberry
Pinxter flower
Highbush blueberry
Lowbush blueberry
Deerberry
8 Swamps, marshy bogs 4

A Woods 1
4 Woods, low, swamps 19

4 Marshes, streamsides 10
5 Woods, thickets 18

7 Woods, rich, streamsides 1

5 Woods, dry 11
8 Swamps, dry woods, acidi 2
6 Woods, dry 2
7 Marshes, wet woods \& thic 2
5 Woods, acidic 17
5 Woods, low, swamps 15
6 Woods, dry 17
7 Thickets, woods, dry 9

HAMAMELIDACEAE
Witch-hazel

6 Woods 18

BEECH FAMILY

Quercus muhlenbergii
Quercus palustris
Quercus rubra
Quercus velutina
WALNUT FAMILY
Carya alba
Carya cordiformis
Carya glabra
Carya ovalis
Carya ovata Juglans cinerea Juglans nigra

LAUREL FAMILY
Sassafras albidum
MAGNOLIA FAMILY
Liriodendron tulipifera
MIMOSA FAMILY
Albizia julibrissin
MULBERRY FAMILY
Broussonetia papyrifera
Maclura pomifera
Morus alba
SOUR-GUM FAMILY
Nyssa sylvatica
OLIVE FAMILY
Fraxinus americana
Fraxinus nigra
Fraxinus pennsylvanica
PINE FAMILY
Pinus strobus
Pinus virginiana
Tsuga canadensis

PLANE-TREE FAMILY

Platanus occidentalis

ROSE FAMILY

Amelanchier arborea
Crataegus crus-galli Crataegus flabellata
Crataegus pensylvanica
Crataegus phaenopyrum
Crataegus species
Malus pumila
Malus species
Prunus avium
Prunus serotina
Prunus subhirtella
WALLACE TREES

FAGACEAE

Yellow oak
Pin oak
Red oak
Black oak
JUGLANDACEAE
Mockernut hickory
Bitternut hickory
Pignut hickory
Sweet pignut hickory
Shagbark hickory
Butternut
Black walnut
LAURACEAE
Sassafras
MAGNOLIACEAE
Tulip-tree
MIMOSACEAE
Mimosa
MORACEAE
Paper mulberry
Osage orange
White mulberry
NYSSACEAE
Black gum
OLEACEAE
White ash
Black ash
Green ash
PINACEAE
White pine
Scrub pine
Eastern hemlock
PLATANACEAE
Sycamore
ROSACEAE
Tree shadbush
Cockspur hawthorn
Hawthorn
Pennsylvania hawthorn
Washington thorn
Hawthorn
Apple
Crabapple
Sweet cherry
Black cherry
Higan cherry

8	Woods, rich calcareous	1
3	Woods, low	17
4	Woods	19
4	Woods	20

5	Woods	14
3	Woods	15
4	Woods	9
4	Woods	1
5	Woods	20
3	Woods, floodplain	2
2	Woods, floodplain	20

1 Thickets, young woods 20

2 Woods 20

A Roadsides, waste places 2

A Roadsides, waste places 1
A Thickets, hedgerows 4
A Thickets, hedgerows 16

4 Woods 20

1 Woods 20
7 Swamps, wet woods 6
3 Woods, low 10

A 7 Woods, rich 4
6 Woods, dry, serpentine $\quad 1$
6 Woods, rich 5

3 Woods, floodplain 13

5 Woods 10
4 Thickets, woods edges 6
4 Low woods, dges 3
6 Edges, hedherows, thicket 1
4 Thickets, edges 4
Woods, thickets 11
A Thickets, old fields 5
A* Thickets, woods, edges 15
A Woods, thickets 20
1 Woods 20
A* Hedgerows, edges 2

ROSE FAMILY	ROSACEAE		Edges, old fields	2
Pyrus calleryana	Callery pear	A^{*}		
Pyrus communis	Pear	A	Thickets, old fields	3
RUE FAMILY	RUTACEAE			
Phellodendron japonicum	Japanese cork-tree	A^{*}	Woods, disturbed, thickets	2
WILLOW FAMILY	SALICACEAE			
Populus grandidentata	Bigtooth aspen	3	Thickets, old, young wood	14
Salix babylonica	Weeping willow	A	Meadows, streamsides	1
Salix nigra	Black willow	2	Marshes, streamsides	15
Salix species	Willow		Marshes, streamsides	4
QUASSIA FAMILY	SIMAROUBACEAE			
Ailanthus altissima	Tree-of-heaven	A^{*}	Thickets, old fields	11
LINDEN FAMILY	TILIACEAE			
Tilia americana	Basswood	5	Woods, rich	13
ELM FAMILY	ULMACEAE			
Celtis occidentalis	Hackberry	2	Woods, thickets	12
Ulmus americana	American elm	4	Woods, floodplain	2
Uimus rubra	Slippery elm	4	Woods, low	20

STATUS: $A=$ Alien, $A^{*}=$ Invasive alien

Number=Coefficient of Conservatism

COUNT $=$ Number of sections seen in out of 20 sections

APPENDIX 3

"CONSERVATIVE" PLANT SPECIES OF WALLACE TOWNSHIIP

Based on 2006 Fieldwork

Plant Species with
A Coefficiency of Conservatism

$$
\text { Of } 7-10
$$

(see text for explanation)

WALLACE TOWNSHIP

SPECIES WITH CC OF 7 TO 10

7 Sanguisorba canadensis
7 Sedum ternatum
7 Sparganium americanum
7 Vaccinium stamineum

8 Andropogon glomeratus
8 Cardamine rotundifolia
8 Carex atlantica ssp. atlantica
8 Carex lacustris
8 Chamaelirium luteum
8 Dicanthelium polyanthes
8 Gentiana andrewsii
8 Kalmia angustifolia
8 Lysimachia terrestris
8 Mitella diphylla
8 Phlox divaricata v. divaricata
8 Pilea fontana
8 Polypodium virginianum
8 Quercus muhlenbergii
8 Rhynchospora capitellata
8 Saxifraga pensylvanica
8 Sphenopholis pensylvanica
8 Toxicodendron vernix
8 Veronicastrum virginicum

9 Triadenum fraseri

10 Poa paludigena

Canadian burnet
Wild stonecrop
Common bur-reed
Deerberry

Broom-sedge
Mountain water-cress
A sedge
Lake sedge
Fairy-wand
A panic-grass
Bottle gentian
Sheep laurel
Swamp candles
Bishop's-mitre
Wild blue phlox
Lesser clearweed
Polypody
Yellow oak
Small-headed beak-rush
Swamp saxifrage
Swamp oats
Poison sumac
Culver's-root

Marsh St. John's-wort

Marsh bluegrass

Marshes, boggy woods
Woods, floodplain
Marshes
Thickets, woods, dry

PR Wet meadows 1
Springheads, seeps 7
Swamps, marshes 3
Marshes, swamps 3
Woods, rich open 1
PW Woods, open, thickets 1
Meadows, rich 4
Swamps, dry woods, acidic 2
Marshes, swamp edges 2
Seeps, springheads 2
Woods, rich ravine 1
Swamps, seeps 1
Bluffs, rocks 4
Woods, rich calcareous 1
Wet meadows, bogs 5
Marshes, wet woods 2
Woods, wet, seeps, springs : 1
Swamps, marshy bogs 4
Fields, meadows, thickets 2

Marshes : 2

PR Open cool swamps

Map 4
 Wallace Township

Woodlands 1956 / Woodlands 2003
Exceptional Natural Areas
\& Rare Species Sites

Brandywine Conservancy
Environmental Management Center
Data Scrarce: Base dura from Chedter Cound GIS dala disiriom
2005. Wuodlonds from Brandywine Conservancy, 2003. USGS
topelogicel map. 1956. Exceptonal natural arvas and rare plant species: from field survy by Junel Ehert. 1/2007

Legend

- Rare plant species
\sim Streams
1 Water bodies
Exceptional natural areas USGS woodlands, 1956
Woodlands, 2003
Forest interiors, 2003
\square Township boundary

